File size: 3,951 Bytes
1d889de 830124e 1d889de 830124e 1d889de ac5dcb3 830124e 1d889de f3279b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
---
dataset_info:
features:
- name: image
dtype: image
- name: 5_o_Clock_Shadow
dtype: int64
- name: Arched_Eyebrows
dtype: int64
- name: Bags_Under_Eyes
dtype: int64
- name: Bald
dtype: int64
- name: Bangs
dtype: int64
- name: Big_Lips
dtype: int64
- name: Big_Nose
dtype: int64
- name: Black_Hair
dtype: int64
- name: Blond_Hair
dtype: int64
- name: Blurry
dtype: int64
- name: Brown_Hair
dtype: int64
- name: Bushy_Eyebrows
dtype: int64
- name: Chubby
dtype: int64
- name: Double_Chin
dtype: int64
- name: Eyeglasses
dtype: int64
- name: Goatee
dtype: int64
- name: Gray_Hair
dtype: int64
- name: Heavy_Makeup
dtype: int64
- name: High_Cheekbones
dtype: int64
- name: Male
dtype: int64
- name: Mouth_Slightly_Open
dtype: int64
- name: Mustache
dtype: int64
- name: Narrow_Eyes
dtype: int64
- name: No_Beard
dtype: int64
- name: Oval_Face
dtype: int64
- name: Pale_Skin
dtype: int64
- name: Pointy_Nose
dtype: int64
- name: Receding_Hairline
dtype: int64
- name: Rosy_Cheeks
dtype: int64
- name: Sideburns
dtype: int64
- name: Smiling
dtype: int64
- name: Straight_Hair
dtype: int64
- name: Wavy_Hair
dtype: int64
- name: Wearing_Earrings
dtype: int64
- name: Wearing_Hat
dtype: int64
- name: Wearing_Lipstick
dtype: int64
- name: Wearing_Necklace
dtype: int64
- name: Wearing_Necktie
dtype: int64
- name: Young
dtype: int64
- name: image_hash
dtype: string
- name: Attractive
dtype: int64
- name: reviewed
dtype: bool
splits:
- name: train
num_bytes: 879662473.28
num_examples: 117544
download_size: 839788664
dataset_size: 879662473.28
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# CelebA Female Dataset
## Dataset Description
This dataset is a filtered subset of the [CelebA dataset](https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html) (Celebrities Faces Attributes), containing only female faces. The original CelebA dataset is a large-scale face attributes dataset with more than 200,000 celebrity images, each with 40 attribute annotations.
### Dataset Creation
This dataset was created by:
1. Loading the original CelebA dataset
2. Filtering to keep only images labeled as female (based on the "Male" attribute)
3. Deduplicating the dataset to remove any potential duplicate images
## Intended Uses & Limitations
This dataset is intended for:
- Facial analysis research focusing on female subjects
- Training or fine-tuning image models that need to work specifically with female faces
- Studying facial attributes in a gender-specific context
**Limitations:**
- The dataset is limited to faces labeled as female in the original CelebA dataset
- Any biases present in the original CelebA dataset may persist in this filtered version
- The gender labels come from the original dataset and may not reflect self-identification
## Dataset Structure
The dataset preserves the original structure of CelebA, including:
- Image data
- All 40 original attribute annotations
- File paths and identifiers
## Citation
If you use this dataset, please cite both the original CelebA dataset and this filtered version:
@inproceedings{liu2015faceattributes,
title = {Deep Learning Face Attributes in the Wild},
author = {Liu, Ziwei and Luo, Ping and Wang, Xiaogang and Tang, Xiaoou},
booktitle = {Proceedings of International Conference on Computer Vision (ICCV)},
month = {December},
year = {2015}
}
## Ethical Considerations
This gender-filtered dataset should be used with awareness of potential ethical implications:
- Be mindful of reinforcing gender stereotypes or biases
- Consider the impacts of technology built using gender-specific datasets
- Respect privacy and consent considerations relevant to facial images
|