File size: 3,951 Bytes
1d889de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
830124e
 
 
 
1d889de
 
830124e
1d889de
ac5dcb3
830124e
1d889de
 
 
 
 
 
f3279b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
---
dataset_info:
  features:
  - name: image
    dtype: image
  - name: 5_o_Clock_Shadow
    dtype: int64
  - name: Arched_Eyebrows
    dtype: int64
  - name: Bags_Under_Eyes
    dtype: int64
  - name: Bald
    dtype: int64
  - name: Bangs
    dtype: int64
  - name: Big_Lips
    dtype: int64
  - name: Big_Nose
    dtype: int64
  - name: Black_Hair
    dtype: int64
  - name: Blond_Hair
    dtype: int64
  - name: Blurry
    dtype: int64
  - name: Brown_Hair
    dtype: int64
  - name: Bushy_Eyebrows
    dtype: int64
  - name: Chubby
    dtype: int64
  - name: Double_Chin
    dtype: int64
  - name: Eyeglasses
    dtype: int64
  - name: Goatee
    dtype: int64
  - name: Gray_Hair
    dtype: int64
  - name: Heavy_Makeup
    dtype: int64
  - name: High_Cheekbones
    dtype: int64
  - name: Male
    dtype: int64
  - name: Mouth_Slightly_Open
    dtype: int64
  - name: Mustache
    dtype: int64
  - name: Narrow_Eyes
    dtype: int64
  - name: No_Beard
    dtype: int64
  - name: Oval_Face
    dtype: int64
  - name: Pale_Skin
    dtype: int64
  - name: Pointy_Nose
    dtype: int64
  - name: Receding_Hairline
    dtype: int64
  - name: Rosy_Cheeks
    dtype: int64
  - name: Sideburns
    dtype: int64
  - name: Smiling
    dtype: int64
  - name: Straight_Hair
    dtype: int64
  - name: Wavy_Hair
    dtype: int64
  - name: Wearing_Earrings
    dtype: int64
  - name: Wearing_Hat
    dtype: int64
  - name: Wearing_Lipstick
    dtype: int64
  - name: Wearing_Necklace
    dtype: int64
  - name: Wearing_Necktie
    dtype: int64
  - name: Young
    dtype: int64
  - name: image_hash
    dtype: string
  - name: Attractive
    dtype: int64
  - name: reviewed
    dtype: bool
  splits:
  - name: train
    num_bytes: 879662473.28
    num_examples: 117544
  download_size: 839788664
  dataset_size: 879662473.28
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---

# CelebA Female Dataset

## Dataset Description

This dataset is a filtered subset of the [CelebA dataset](https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html) (Celebrities Faces Attributes), containing only female faces. The original CelebA dataset is a large-scale face attributes dataset with more than 200,000 celebrity images, each with 40 attribute annotations.

### Dataset Creation

This dataset was created by:
1. Loading the original CelebA dataset
2. Filtering to keep only images labeled as female (based on the "Male" attribute)
3. Deduplicating the dataset to remove any potential duplicate images

## Intended Uses & Limitations

This dataset is intended for:
- Facial analysis research focusing on female subjects
- Training or fine-tuning image models that need to work specifically with female faces
- Studying facial attributes in a gender-specific context

**Limitations:**
- The dataset is limited to faces labeled as female in the original CelebA dataset
- Any biases present in the original CelebA dataset may persist in this filtered version
- The gender labels come from the original dataset and may not reflect self-identification

## Dataset Structure

The dataset preserves the original structure of CelebA, including:
- Image data
- All 40 original attribute annotations
- File paths and identifiers

## Citation

If you use this dataset, please cite both the original CelebA dataset and this filtered version:

@inproceedings{liu2015faceattributes,
title = {Deep Learning Face Attributes in the Wild},
author = {Liu, Ziwei and Luo, Ping and Wang, Xiaogang and Tang, Xiaoou},
booktitle = {Proceedings of International Conference on Computer Vision (ICCV)},
month = {December},
year = {2015}
}

## Ethical Considerations

This gender-filtered dataset should be used with awareness of potential ethical implications:
- Be mindful of reinforcing gender stereotypes or biases
- Consider the impacts of technology built using gender-specific datasets
- Respect privacy and consent considerations relevant to facial images