Min-Jaewon commited on
Commit
fbe0b2d
·
verified ·
1 Parent(s): dec87b2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -0
README.md CHANGED
@@ -33,3 +33,36 @@ configs:
33
  - split: train
34
  path: data/train-*
35
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  - split: train
34
  path: data/train-*
35
  ---
36
+
37
+ # SA-Text
38
+
39
+ **Text-Aware Image Restoration with Diffusion Models** (arXiv:2506.09993)
40
+ Large-scale training dataset for the **Text-Aware Image Restoration (TAIR)** task.
41
+
42
+ - 📄 Paper: https://arxiv.org/abs/2506.09993
43
+ - 🌐 Project Page: https://cvlab-kaist.github.io/TAIR/
44
+ - 💻 GitHub: https://github.com/cvlab-kaist/TAIR
45
+ - 🛠 Dataset Pipeline: https://github.com/paulcho98/text_restoration_dataset
46
+
47
+ ## Dataset Description
48
+
49
+ **SA-Text** is constructed from SA-1B dataset using our official [dataset pipeline](https://github.com/paulcho98/text_restoration_dataset). It contains **100K** high-resolution scene images paired with polygon-level text annotations.
50
+ This dataset is tailored for TAIR task, which aims to restore both visual quality and text fidelity in degraded images.
51
+
52
+ ## Notes
53
+
54
+ - Each image includes one or more **text instances** with transcriptions and polygon-level labels.
55
+ - Designed for training **TeReDiff**, a multi-task diffusion model introduced in our paper.
56
+ - For real-world evaluation, check [Real-Text](https://huggingface.co/datasets/Min-Jaewon/Real-Text).
57
+
58
+ ## Citation
59
+ Please cite the following paper if you use this dataset:
60
+ ```
61
+ {
62
+ @article{min2024textaware,
63
+ title={Text-Aware Image Restoration with Diffusion Models},
64
+ author={Min, Jaewon and Kim, Jin Hyeon and Cho, Paul Hyunbin and Lee, Jaeeun and Park, Jihye and Park, Minkyu and Kim, Sangpil and Park, Hyunhee and Kim, Seungryong},
65
+ journal={arXiv preprint arXiv:2506.09993},
66
+ year={2025}
67
+ }
68
+ ```