import os from datasets import DatasetInfo, GeneratorBasedBuilder, SplitGenerator, Version, Features, Value, Sequence, Image, Split _CITATION = """\ @inproceedings{ma2023crepe, title={Crepe: Can vision-language foundation models reason compositionally?}, author={Ma, Zixian and Hong, Jerry and Gul, Mustafa Omer and Gandhi, Mona and Gao, Irena and Krishna, Ranjay}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={10910--10921}, year={2023} } """ _DESCRIPTION = """\ Code and datasets for "CREPE: Can Vision-Language Foundation Models Reason Compositionally?". """ _HOMEPAGE = "https://huggingface.co/datasets/Mayfull/crepe_vlms" _LICENSE = "MIT License" class CREPEVLMsDataset(GeneratorBasedBuilder): VERSION = Version("1.0.0") def _info(self): return DatasetInfo( description=_DESCRIPTION, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, features=Features( { "images": Sequence(Image()), # Sequence of images "positive_caption": Sequence(Value("string")), "negative_caption": Sequence(Value("string")), "x": Value("float"), "y": Value("float"), "width": Value("float"), "height": Value("float"), "original_file_name": Value("string"), } ), ) def _split_generators(self, dl_manager): # URLs for images.zip and examples.jsonl urls_to_download = { "images": "https://huggingface.co/datasets/Mayfull/crepe_vlms/resolve/main/images.zip", "examples": "https://huggingface.co/datasets/Mayfull/crepe_vlms/resolve/main/examples.jsonl", } downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ SplitGenerator( name=Split.TEST, gen_kwargs={ "examples_file": downloaded_files["examples"], "images_dir": downloaded_files["images"], }, ), ] def _generate_examples(self, examples_file, images_dir): # Read the examples.jsonl file with open(examples_file, "r", encoding="utf-8") as f: for idx, line in enumerate(f): data = eval(line.strip()) # Get image file path image_file_name = data.get("image") image_path = os.path.join(images_dir, image_file_name) # Ensure the image file exists images = [image_path] if os.path.exists(image_path) else [] # Convert bounding box values to float x = float(data.get("x", 0.0)) y = float(data.get("y", 0.0)) width = float(data.get("width", 0.0)) height = float(data.get("height", 0.0)) # Prepare the example yield idx, { "images": images, "positive_caption": data.get("positive_caption", []), "negative_caption": data.get("negative_caption", []), "x": x, "y": y, "width": width, "height": height, "original_file_name": data.get("original_file_name", ""), }