# Egyptian Arabic ASR Clean 72 h ## Dataset Summary This corpus contains **≈72 h** of Egyptian‑Arabic speech aligned to text. Audio has been resampled to **16 kHz mono WAV**, transcripts are normalised Arabic (no diacritics, Tatweel, digits verbalised), and the data are split 80 / 10 / 10 into train / validation / test. ## Supported Tasks and Leaderboards | Task | Tags | Notes | |------|------|-------| | **Automatic Speech Recognition** | `asr`, `speech-recognition` | Primary use‑case | | **Forced Alignment / VAD** | `alignment`, `vad` | Clips ≤ 25 s | ## Languages The dataset is **predominantly Egyptian Arabic** (`ar‑EG`). ~85 % of recorded hours are male speakers; speaker IDs are unavailable. ## Dataset Structure ### Data Fields | Field | Type | Description | |-------|------|-------------| | `audio` | `Audio` | Pointer to WAV @ 16 kHz | | `text` | `string` | Normalised Arabic transcript | | `duration` | `float` | Seconds (post‑resample) | | `dataset_source` | `string` | One‑letter code A–D | ### Splits | Split | Hours | |-------|-------| | train | ≈57.6 | | validation | ≈7.2 | | test | ≈7.2 | ## Source Data | Code | Raw Hours | Description | |------|-----------|-------------| | A | ~465 | Long clips, heavy overlap | | B | ~65 | Similar to A, shorter | | C | ~5 | Dual‑channel conversations | | D | ~2.5 | YouTube excerpts | | *Other* | <5 | Minor sources | Only **≈12 %** of the original 570 h survived the cleaning pipeline. ## Data Collection and Processing 1. **Format Unification** – convert all audio to 16 kHz WAV. 2. **Deduplication** – drop exact audio/text duplicates; remove nulls. 3. **Metadata Pruning** – retain only core fields. 4. **Text Normalisation** – strip diacritics, Tatweel, punctuation, Latin letters; verbalise digits; fix common glyph errors; run CAMeL‑Tools morphology checks. 5. **Alignment Diagnostics** – compute chars/s and words/s; flag extreme values. 6. **Duration Filtering** – keep clips 0.5–25 s. 7. **Shuffle & Split** – 80 / 10 / 10 random split, uploaded as `datasets.DatasetDict`. ## Usage Example ```python from datasets import load_dataset ds = load_dataset("your-username/egyptian_arabic_asr_clean72h") print(ds["train"][0]["audio"].sampling_rate) # 16000 print(ds["train"][0]["text"])