|
import os |
|
import pickle |
|
import torch |
|
from torch.utils.data import DataLoader, Dataset |
|
from transformers import DPRContextEncoder, DPRContextEncoderTokenizer |
|
from typing import List, Tuple, Dict |
|
import pandas as pd |
|
import argparse |
|
from tqdm import tqdm |
|
|
|
class ContextDataset(Dataset): |
|
""" |
|
自定义数据集类,用于批量加载上下文文本。 |
|
""" |
|
def __init__(self, contexts: List[Tuple[str, str, str]]): |
|
""" |
|
Args: |
|
contexts (List[Tuple[str, str, str]]): 每个条目为 (id, title, text)。 |
|
""" |
|
self.contexts = contexts |
|
|
|
def __len__(self): |
|
return len(self.contexts) |
|
|
|
def __getitem__(self, idx): |
|
|
|
return self.contexts[idx] |
|
|
|
class DPRContextEncoderBatchProcessor: |
|
def __init__(self, model_name: str = "facebook/dpr-ctx_encoder-multiset-base", batch_size: int = 16, device: str = None): |
|
self.device = device if device else ("cuda" if torch.cuda.is_available() else "cpu") |
|
self.tokenizer = DPRContextEncoderTokenizer.from_pretrained(model_name) |
|
self.model = DPRContextEncoder.from_pretrained(model_name).to(self.device) |
|
self.batch_size = batch_size |
|
|
|
def process_contexts(self, contexts: List[Tuple[str, str, str]], insert_title: bool = True) -> List[Tuple[str, List[float]]]: |
|
""" |
|
批量处理上下文文本并生成嵌入向量。 |
|
|
|
Args: |
|
contexts (List[Tuple[str, str, str]]): 每个条目为 (id, title, text)。 |
|
insert_title (bool): 是否在文本前插入标题。 |
|
|
|
Returns: |
|
List[Tuple[str, List[float]]]: 每个上下文文本的 ID 和嵌入向量列表。 |
|
""" |
|
dataset = ContextDataset(contexts) |
|
dataloader = DataLoader(dataset, batch_size=self.batch_size, shuffle=False) |
|
|
|
embeddings = [] |
|
for batch_contexts in tqdm(dataloader, desc="Processing contexts", unit="batch"): |
|
ids, titles, texts = batch_contexts |
|
print(f"ids:{ids}") |
|
|
|
if insert_title: |
|
combined_texts = [f"{title} [SEP] {text}" for title, text in zip(titles, texts)] |
|
else: |
|
combined_texts = [text for text in texts] |
|
|
|
inputs = self.tokenizer( |
|
combined_texts, |
|
return_tensors="pt", |
|
padding=True, |
|
truncation=True, |
|
max_length=512 |
|
).to(self.device) |
|
|
|
with torch.no_grad(): |
|
outputs = self.model(**inputs).pooler_output |
|
batch_embeddings = outputs.cpu().numpy() |
|
|
|
for idx, embedding in enumerate(batch_embeddings): |
|
embeddings.append((ids[idx].item(), embedding)) |
|
|
|
return embeddings |
|
|
|
def save_embeddings(self, contexts: List[Tuple[str, str, str]], output_file: str, insert_title: bool = True): |
|
""" |
|
生成嵌入并保存到指定文件。 |
|
|
|
Args: |
|
contexts (List[Tuple[str, str, str]]): 每个条目为 (id, title, text)。 |
|
output_file (str): 输出文件路径。 |
|
insert_title (bool): 是否在文本前插入标题。 |
|
""" |
|
print("Generating embeddings...") |
|
embeddings = self.process_contexts(contexts, insert_title=insert_title) |
|
|
|
result = {embedding[0]: embedding[1] for embedding in embeddings} |
|
os.makedirs(os.path.dirname(output_file), exist_ok=True) |
|
|
|
print("Saving embeddings to file...") |
|
with tqdm(total=len(embeddings), desc="Saving embeddings", unit="embedding") as pbar: |
|
with open(output_file, "wb") as f: |
|
pickle.dump(result, f) |
|
pbar.update(len(embeddings)) |
|
|
|
print(f"Total passages processed: {len(embeddings)}. Embeddings saved to {output_file}") |
|
|
|
def load_and_process_tsv(self, tsv_file: str, output_file: str, insert_title: bool = True): |
|
""" |
|
从 TSV 文件中加载数据并生成嵌入。 |
|
|
|
Args: |
|
tsv_file (str): TSV 文件路径。 |
|
output_file (str): 输出文件路径。 |
|
insert_title (bool): 是否在文本前插入标题。 |
|
""" |
|
print(f"Loading data from {tsv_file}...") |
|
df = pd.read_csv(tsv_file, sep='\t') |
|
|
|
ids = df['id'].tolist() |
|
titles = df['title'].fillna("").tolist() |
|
texts = df['text'].fillna("").tolist() |
|
|
|
contexts = list(zip(ids, titles, texts)) |
|
|
|
self.save_embeddings(contexts, output_file, insert_title=insert_title) |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description="DPR Context Encoder Batch Processor") |
|
parser.add_argument("--tsv_file", type=str, required=True, help="Path to the input TSV file with 'id', 'title', and 'text' columns.") |
|
parser.add_argument("--output_file", type=str, required=True, help="Path to save the generated embeddings.") |
|
parser.add_argument("--batch_size", type=int, default=8, help="Batch size for processing contexts.") |
|
parser.add_argument("--model_name", type=str, default="facebook/dpr-ctx_encoder-multiset-base", help="Name of the DPR context encoder model.") |
|
parser.add_argument("--insert_title", action="store_true", help="Whether to insert the title before the text for embedding generation.") |
|
parser.add_argument("--device", type=str, default=None, help="Device to run the model on (e.g., 'cuda' or 'cpu').") |
|
|
|
args = parser.parse_args() |
|
|
|
processor = DPRContextEncoderBatchProcessor( |
|
model_name=args.model_name, |
|
batch_size=args.batch_size, |
|
device=args.device |
|
) |
|
|
|
processor.load_and_process_tsv(args.tsv_file, args.output_file, insert_title=args.insert_title) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|