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Abstract

Dexterous manipulation with contact-rich interactions is
crucial for advanced robotics. While recent diffusion-
based planning approaches show promise for simple ma-
nipulation tasks, they often produce unrealistic ghost states
(e.g., the object automatically moves without hand con-
tact) or lack adaptability when handling complex sequen-
tial interactions. In this work, we introduce DexHand-
Diff, an interaction-aware diffusion planning framework
for adaptive dexterous manipulation. DexHandDiff mod-
els joint state-action dynamics through a dual-phase diffu-
sion process which consists of pre-interaction contact align-
ment and post-contact goal-directed control, enabling goal-
adaptive generalizable dexterous manipulation. Addition-
ally, we incorporate dynamics model-based dual guidance
and leverage large language models for automated guid-
ance function generation, enhancing generalizability for
physical interactions and facilitating diverse goal adapta-
tion through language cues. Experiments on physical in-
teraction tasks such as door opening, pen and block re-
orientation, object relocation, and hammer striking demon-
strate DexHandDiff’s effectiveness on goals outside train-
ing distributions, achieving over twice the average success
rate (59.2% vs. 29.5%) compared to existing methods. Our
framework achieves an average of 70.7% success rate on
goal adaptive dexterous tasks, highlighting its robustness
and flexibility in contact-rich manipulation.

1. Introduction

Dexterous manipulation, a cornerstone of advanced robotics
with applications from service robotics to industrial au-
tomation, remains a challenging problem despite advances
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Figure 1. (a) Previous diffusers directly apply goal guidance to
object states, which causes ghost states, where objects appear to
move independently without hand contact-a physically impossi-
ble scenario. (b) DexHandDiff introduces contact guidance that
jointly influences both hand/object states and hand actions, while
maintaining tight state-action coupling. It prevents ghost states,
and enables precise goal adaptation. (c) Quantitative comparisons
with previous methods on goal-shifted interaction tasks.

in reinforcement learning (RL) [2, 4, 8, 47, 52] and im-
itation learning [23, 34]. Recently, diffusion-based plan-
ning [1, 14, 24, 28] has emerged as a promising new repre-
sentative of imitation learning, capable of learning intricate
motion trajectories from demonstration data for smoother
and more adaptable control. However, current diffusion ap-
proaches are primarily designed for simpler gripper-based
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(one Degree of Freedom) manipulation tasks, focusing on
either trajectory completion or action replay by reaching
target positions sequentially. They fall short in dexterous
hand manipulation requiring part-aware precise interaction
and exhibiting rich contact dynamics through multi-finger
control and in-hand adjustment.

More specifically, existing diffusion on action mod-
els [14, 56] (i.e. models generating actions) excel in well-
defined tasks but often lack generalizability in adapting
to complex or new tasks with flexible interaction require-
ments. They necessitate continual data collection for new
goal configurations even within the same dynamics, limit-
ing their effectiveness in contact-rich interactions. In con-
trast, diffusion on state methods [1, 24, 37], including those
adapted from video diffusion models for imitation learn-
ing [6, 16], will produce unrealistic “ghost states” in inter-
action tasks. As shown in Fig. 1 and Fig. 2, the visual-
izations are rendered by setting states frame by frame with
predicted output from state-based methods, and show ob-
jects react independently of physical contact (e.g. drawers
opening on their own before the manipulator reaches them),
which cannot actually happen and would result in failure.
This issue arises because the object states can’t be directly
controlled. Actions must first influence dexterous hand’s
states before impacting the object, revealing the importance
of modeling state transitions for physics-driven interactions.

Thus, we propose DexHandDiff, an interaction-aware
diffusion model tailored for adaptive dexterous manipu-
lation that exhibits goal shifts or cost function variations
while maintaining similar dynamics. DexHandDiff mod-
els joint state-action dynamics that takes the state output to
guide and constrain the action output with realistic physi-
cal behavior. A dynamics model-based dual guide is incor-
porated to maintain coherence with dynamics observed in
training data. It addresses the action-state consistency chal-
lenge first identified in Diffuser [24] which however priori-
tized generated state over action, as shown in Fig. 1.

Specifically, DexHandDiff adopts a goal-adaptive diffu-
sion mechanism with dual-phase process. 1) At first, pre-
contact phase, it guides the manipulator to align with the
object’s key contact point, such as a handle or the center of
object, ensuring stable alignment before initiating physical
interaction. 2) In the subsequent post-contact phase, it in-
troduces joint guidance over both the manipulator and the
object states, enabling fine-grained control to achieve the
target state for the object. This sequential approach inte-
grates both action diffusion that prevents premature influ-
ence on the object’s state before contact, and state diffusion
that ensures effective goal alignment throughout. By gen-
erating states and actions in an interaction-aware manner,
DexHandDiff produces more coherent and realistic trajec-
tories suited to complex tasks like tool using. Furthermore,
to automate guidance function design, DexHandDiff intro-

duces an approach using large language models in the text-
to-reward paradigm, that can generalize across diverse goals
and cost functions via language cues.

We conduct experiments on multiple dexterous manipu-
lation tasks to evaluate DexHandDiff’s effectiveness, cov-
ering both in-domain and goal-adaptability challenges, e.g.,
adapting to new goal “door closing” from “90-degree door
opening” training data. Results with up to 70.0% success
rate on the 30-degree door task (vs. the next best 16.7% for
Diffusion Policy) and 46.7% on the hammer nail half-drive
task (vs. the next best 33.3% for Decision Diffuser), con-
firm DexHandDiff’s robustness and adaptability in captur-
ing complex hand-object-environment interactions.

In summary, DexHandDiff advances adaptive dexterous
manipulation by: 1) We propose the first interaction-aware,
goal-adaptive diffusion planner for dexterous manipulation,
modeling manipulator-object-environment dependencies to
handle sequential tasks with complex state transitions. 2)
By jointly modeling state-action behaviors with dynamics-
based dual guidance and LLM-based interaction guidance,
DexHandDiff sets a new standard for adaptive planning in
dexterous manipulation and for the first time extends text-
to-reward concepts to diffusers. 3) Experimental valida-
tion on diverse dexterous manipulation tasks, demonstrat-
ing its robustness and adaptability. DexHandDiff achieves
over twice the average success rate of the next best method
(59.2% vs. 29.5%) across goal-directed tasks.

2. Related Works

Dexterous Manipulation. Dexterous manipulation [12, 13,
19, 20, 32, 40, 42, 45, 48, 50] with multi-fingered hands en-
ables complex tasks in unstructured environments by mim-
icking human hand flexibility. Initially, traditional methods
using trajectory optimization and precise dynamics mod-
els [36, 41], struggled with high-dimensional action spaces
and contact-rich dynamics. This led to the adoption of rein-
forcement learning (RL) [10, 41, 52, 58] for handling com-
plex, high-DOF (degree of freedom) interactions. However,
RL requires extensive online exploration and carefully de-
signed reward functions [11, 36] where inadequate reward
shaping can hardly learn and it limits adaptability [55, 57].
Demonstration-based methods [57] reduce sample com-
plexity, but they struggle to generalize across sequential,
contact-rich tasks. Our DexHandDiff addresses these chal-
lenges by explicitly modeling hand-object-environment in-
teractions, enabling goal-adaptive planning without intri-
cate reward shaping, thus allowing for more efficient learn-
ing in complex, sequential tasks.

Diffusion-based Planning Methods. Planning with diffu-
sion models has become prominent in imitation learning for
robotic manipulation [1, 9, 14, 24, 28–30, 37]. Classifier-
guided methods [24, 28] used task-specific classifiers to
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condition policies, while classifier-free ones integrated task
variations within diffusion model [1]. However, classifier-
free methods lack flexibility for zero-shot explicit condi-
tioning tasks due to reliance on training data configura-
tions. DexHandDiff addresses this by performing classifier-
guided diffusion over both state and action spaces, enabling
precise interaction and rich-contact dynamics planning for
more realistic, complex and adaptable manipulation.
LLM-based Robot Policy Code Generation. Recent
works [7, 27, 35, 51] have demonstrated the potential of
LLMs in generating executable code for robotics tasks.
Code as Policies [27] showed LLMs can effectively trans-
late high-level task descriptions into functional robot con-
trol programs. Eureka [33] and Text2Reward [54] further
advanced this direction by generating crucial parameters
or complete reward functions from language descriptions,
demonstrating well-structured prompts with comprehensive
environment information can enable reliable reward shap-
ing. Our work extends this text-to-code paradigm to imi-
tation learning through diffusers. DexHandDiff provides a
natural interface for LLM code generation through its guid-
ance function formulation, bridging the gap between task
specification and behavioral policies to learn.

3. Preliminary
3.1. Diffusion Model as Policy
We formulate the dexterous manipulation planning prob-
lem within the Markov Decision Process (MDP) frame-
work [39], defined as M = (S,A, T ,R, γ). The objective
is to find an optimal action sequence a∗

0:T that satisfies:

a∗
0:T = argmax

a0:T

J (s0,a0:T ) = argmax
a0:T

T∑
t=0

γtR(st,at),

(1)where state transitions follow st+1 = T (st,at).
Following [1, 24], we leverage diffusion models to ad-

dress this planning problem by treating state and action tra-
jectories τ as sequential data. The reverse process of dif-
fusion learns to denoise trajectories from a standard normal
distribution through conditional probability pθ(τ

i−1 | τ i).
The model is trained to maximize the likelihood:

pθ
(
τ 0) =

∫
p
(
τN

) N∏
i=1

pθ
(
τ i−1 | τ i

)
dτ 1:N , (2)

with the optimization objective inspired by ELBO,
θ∗ = argmin

θ
−Eτ0

[
log pθ

(
τ 0

)]
. (3)

For practical implementation, we adopt the simplified
surrogate loss [22] that focuses on predicting the noise term:

Ldenoise(θ) = Ei,τ0∼q,ϵ∼N [||ϵ− ϵθ(τ
i, i)||2]. (4)

3.2. Classifier-free Conditional Diffusion Policy
To generate high-reward trajectories, classifier-free guid-
ance [15] has been transferred from image to trajectory gen-
eration [1]. This approach incorporates guidance signals

y(τ ) directly in the noise prediction model by:

ϵ̂ = ϵθ(τ
i,∅, i) + ω(ϵθ(τ

i,y, i)− ϵθ(τ
i,∅, i)), (5)

where ω controls the guidance strength, and ∅ denotes the
absence of conditioning. During sampling, trajectories are
generated with the predicted modified noise ϵ̂.

3.3. Classifier-guided Diffusion Policy
Different from classifier-free diffusion models that condi-
tion relying solely on implicit representations within the
training data, classifier-guided approach, enables direct re-
ward or goal conditioning through gradient-based guidance.

For reward maximization, it introduces trajectory opti-
mality Ot at timestep t, following a Bernoulli distribution
where p(Ot = 1) = exp(γtR(st,at)). The diffusion pro-
cess can be naturally extended to incorporate conditioning
by sampling from perturbed distributions:
p̃θ(τ ) = p(τ | O1:T = 1) ∝ pθ(τ )p(O1:T = 1 | τ ) (6)
Under Lipschitz conditions on p(O1:T | τ i) [17], the

reverse diffusion process follows:
pθ(τ

i−1 | τ i,O1:T ) ≈ N (τ i−1;µθ + αΣg,Σ), (7)
where the guidance gradient g is:
g = ∇τ log p(O1:T | τ )|τ=µθ

=

T∑
t=0

γt∇st,at
R(st,at)|(st,at)=µt

= ∇τJ (µθ).
(8)

For discrete goal conditioned tasks, the constraint can be
simplified by directly substituting conditional values at each
diffusion timestep i ∈ {0, 1, ..., N}.

4. Analysis of Diffusion-based Planning Meth-
ods for Interaction-intensive Tasks

Current diffusion-based methods are widely adopted for
robotic manipulation but reveal significant limitations when
applied to dexterous, sequential interaction tasks. Table 1
provides an overview of prominent diffusion-based meth-
ods (including Diffuser [24], Decision Diffuser [1], Diffu-
sion Policy [14] and our DexHandDiff), categorizing each
by their conditioning approach, action generation method,
and goal adaptability. In this section, we analyze these chal-
lenges across three key dimensions.
Action-only Diffusion is Limited in Explicit State Con-
ditioning. Existing diffusion on action models like Dif-
fusion Policy (DP) [14], excel in providing precise, con-
sistent action control, benefiting from extensive training
data and bypassing errors from inverse kinematics. They
yield high performance when training data is sufficient and
diverse. However, for tasks requiring variant multi-stage
goals, action-only diffusion lacks the flexibility to perform
explicit state guidance at intermediate stages, like aligning
hand and object state at pre-grasp stage, hurting the adapt-
ability of the whole planner. For example, DP trained on
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Method Diffusion on
State or Action

Diffusion
Condition Type

Action Gen
Method

Goal
Adaptability

No Ghost
States

Interaction
Aware

Diffuser [24] State Classifier-Guided Inverse Dyn ✓ × ×
Decision Diffuser [1] State Classifier-Free Inverse Dyn × (if diverse data, then ✓) × ×
Diffusion Policy [14] Action Classifier-Free Direct × (if diverse data, then ✓) ✓ ×

DexHandDiff (Ours) State & Action Classifier-Guided Direct ✓ ✓ ✓

Table 1. Comparison of diffusion-based approaches for robot manipulation. Quantitative results on door-opening are shown in Sec. 6.

data with opening the door to 90 degrees hardly adapt to
open 30 or 60 degrees.

Ghost States in State-only Diffusion for Sequential In-
teraction. While state-based diffusion models offer the ad-
vantage of flexible goal specification, it is only effective in
fully actuated tasks where all degrees of freedom (DoF) are
directly controllable, such as MuJoCo [24, 46], and gripper
pick-and-place (requiring only end-effector position con-
trol) [1, 14] tasks. In such scenarios, all states of the system
can be manipulated directly. However, in contact-rich inter-
action task where indirect control exists, such as striking a
nail with a hammer using a dexterous hand, additional un-
controllable DoFs, like the hammer head and nail positions,
must be changed through transitions from the states of the
hand. Applying generation across all states, including those
of objects beyond the hand, will result in unrealistic “ghost
states” where objects appear to move independently of con-
tact but actually cannot, as illustrated in Fig. 1 and Fig. 2.

Classifier-free vs. Classifier-guided Adaptability. Classi-
fier free diffusion models, valued for not requiring external
classifiers, encode task variations directly within the model.
This structure is effective for tasks with constrains in ob-
served configurations, but with limited goal adaptability in
zero-shot or new-task scenarios. For instance, in the push-T
task, DP cannot directly adapt to new target positions due
to the fixed goal in training data. In contrast, classifier-
guided methods, such as ours, mitigate this limitation by of-
fering adaptable, gradient-based guidance, enabling direct
conditioning on new goals or rewards, enhancing flexibility
across a range of tasks.

5. Method
5.1. Interaction-aware Diffusion-based Planning
To address these limitations, we propose DexHandDiff, an
interaction-aware diffusion planning framework (Fig. 3),
maintaining physical consistency and enabling flexible goal
adaptation for dexterous manipulation.

Joint State-Action Diffusion Model. Our approach builds
upon classifier-guided diffusion policies. But we jointly
diffuse over the concatenated state-action space τ =
[(a0, s0), (a1, s1), ..., (aT , sT )], where state s includes
both hand (24 joint angles and 3 position offsets) and task-
specific object states (i.e. door hinge angle, pen pose etc.),
and action a represents changes in controllable states (only

Task: Open Door. Ghost State: The door's hinge generates a ghost state 
where the door opens by itself, moving towards the hand. 

Task: Pen Re-orientation. Ghost State: The pen autonomously rotates 
to the target orientation without any hand manipulation, and finally, the 

fingers move to grip the pen in the designated state.

no interaction

turn by itself

no finger interaction

rotate by itself

finger only to grip

Figure 2. Demonstration of ghost states on the pen reorien-
tation task. The visualizations are rendered by setting predicted
states frame by frame, which cannot actually happen and will lead
to failure. The pen appears to autonomously rotate to the de-
sired pose without any hand manipulation, and the fingers look
like moving to grasp the pen at the last frame.

hand joints and positions).
This design choice directly addresses the above men-

tioned limitations: (1) By including states in the diffu-
sion process, we enable explicit state conditioning and goal
specification, overcoming the limitations of action-only ap-
proaches; (2) By classifier-guided diffusion, we allow flex-
ible goal adaptation without exhaustive training data; (3)
By jointly modeling states and actions, we maintain their
physical coupling and prevent ghost states through carefully
designed guidance. With denoised states guiding the gener-
ated actions, we effectively balance the state conditioning
and action precision.
Extended Behavior Model and Energy Function. Ac-
cording to Eq. 6, the standard conditional diffusion follows:

p̃θ(τ ) ∝ pθ(τ )p(O1:T = 1 | τ ) ∝ pθ(τ )h(τ ), (9)

where we generalize p(O1:T = 1 | τ ) as a behavior model
h(τ ). Then we further generalize this formulation through
a product of experts framework [21], where each expert rep-
resents a specific behavior model:

p̃θ(τ ) ∝ pθ(τ )

n∏
i=1

hi(τ ). (10)

From the energy function perspective, each behavior
model encoding task-specific objectives or constraints is:

hi(τ , c) =
1∫

e−εi(τ ,c)dτ
e−εi(τ ,c), (11)

where εi(τ , c) represents the energy function for the i-
th guidance objective, with c denoting task-specific condi-
tions. This formulation allows combining multiple objec-
tives (e.g., reaching the target state while maintaining phys-
ical consistency) via their respective guidance functions.

Under appropriate smoothness conditions, the guidance
gradient g in the reverse diffusion process (Eq. 7) can be
decomposed as the sum of individual guidance gradients:
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Figure 3. Framework of DexHandDiff. DexHandDiff employs joint state-action diffusion with interaction-aware guidance. Before
interaction (top middle), guidance aligns the hand to the object contact point. Upon contact (bottom middle), additional guidance steers
both hand and object states towards the goal (“&” means state concatenation at input level), enforcing physical constraints and avoiding
ghost states. A learned dynamics model further ensures consistency between states and actions. Our DexHandDiff utilizes extended
behavior model to aggregate multiple condition terms to guide the diffusion process.

g = ∇τ log

n∏
i=1

hi(τ ) =

n∑
i=1

∇τ log hi(τ ) = −
n∑

i=1

∇τ εi(τ , c).

This enables integration of multiple guidance signals,
each addressing different aspects of the interaction task,
while maintaining a coherent optimization objective.
Dynamics-aware Generation. A key challenge in joint
state-action diffusion is maintaining consistency between
generated states and actions [24]. Our method addresses
this through a learned dynamics model trained on demon-
stration data, constraining state-action generation via addi-
tional loss in diffusion training and serving as a guide in
inference. By penalizing state-action pairs that violate ob-
served dynamics, this guidance ensures our model main-
tains both state conditioning benefits and action feasibility.

εdyn(τ ) = |st+1 − T (st,at)|2, (12)

where T (s,a) is a separately trained dynamics model to
ensure physically plausible motion patterns.
Manipulation after Contact Task Guidance. For manip-
ulation after contact tasks such as door opening and tool
using, DexHandDiff employs a dual-phase interaction ap-
proach that acknowledges the fundamentally different na-
ture of interaction before and after contact establishment.
The framework automatically determines the phase transi-
tion based on the distance between the palm position and the
designated contact point on the object, applying a smooth
transition mask to blend between phases.

In the pre-grasp phase, our method focuses on guiding
the manipulator to stably align with the contact point while
preventing premature object movement. We engineer two
primary guidance components: 1) Alignment guidance ϵalign
that directs the end-effector towards precise contact point
while maintaining natural approaching trajectory; 2) Dy-
namics consistency guidance ϵdyn.

Upon establishing contact (determined by palm-object
proximity), the post-grasp phase activates additional guid-
ance mechanisms: 1) Goal-directed guidance ϵsucc that
steers the coupled hand-object system towards target con-
figurations; 2) Physical constraint guidance ϵpenalty that
prevents unrealistic state changes (e.g., limiting per-step
changes in both door hinge and latch angles); 3) Continued
dynamics guidance ϵdyn to maintain motion feasibility.

Therefore, the guidance energy function follows,

ϵ =
{
ϵpre = ϵalign + ϵdyn if |shand − scontact| > δ1

ϵpost = ϵsucc + ϵdyn + ϵpenalty otherwise (13)
where shand and scontact represents the states of dexter-

ous hand and object contact point (e.g. door latch, ham-
mer handle etc.) respectively, and δ1 is a small threshold.
The separated design of grasp proposal guidance (ϵalign) and
task achieving guidance (ϵsucc) mirrors successful policies
in prior work [47, 52], effective for dexterous manipulation.
Besides, the ϵpenalty ensures continuous object state transi-
tions, corresponding to

hpenalty ≜ 1−H(|st+1
obj − stobj | − δ2), (14)

where δ2 is another small threshold and H(·) is the Heav-
iside step function [49]. Then ϵpenalty can be obtained by
applying Eq. 11, becoming a Dirac delta function that di-
rectly sets value when satisfying the constraints.
In-hand Manipulation Task Guidance. For tasks primar-
ily involving in-hand manipulation (e.g., pen spinning, ob-
ject reorientation), where objects are typically already in
hand or quickly transition to in-hand states, we employ a
simplified single-phase guidance structure: 1) Goal state
guidance ϵsucc for achieving target object configurations; 2)
Active finger motion guidance to ensure realistic object ma-
nipulation; 3) Dynamics consistency guidance ϵdyn to main-
tain physical plausibility; 4) Physical constraint guidance
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ϵpenalty that prevents unrealistic state changes.
ϵ = ϵgoal + ϵfinger + ϵdyn + ϵpenalty. (15)

Specially, we define the behavior model that encourages
active finger involvement as,

hfinger(τ , t) = H(|st+1
finger-joints − st

finger-joints| − δ3), (16)

where stfinger-joints is the state vector of all finger joints at
planning step t. δ3 is the third small threshold. H(·) is
also the Heaviside step function. This specialized handling
prevents unrealistic “ghost states”, as discussed in Sec. 4.

5.2. LLM-Based Guidance Generation
The design of task-specific guidance functions for diffusion
policies traditionally requires significant manual effort, par-
ticularly for diverse dexterous manipulation tasks. To ad-
dress this challenge, we leverage a two-stage Large Lan-
guage Model (LLM) process for automated guidance gen-
eration, adopting text-to-reward paradigm [33, 54].
Overall Pipeline. First, we feed the LLM with a 6-part tem-
plate (including function purpose, guidance structure, en-
vironment description, function prototype, task instruction
and few-shot hints) and public documents on simulation
environments [38, 41] to generate task-specific prompts.
Then, the generated task prompts are queried to another
LLM to write guidance function code. Only few-shot hints
require specific refinement, reducing human trial-and-error
times from about 20 (for hand-craft energy function design)
to around 5 while maintaining DexHandDiff performance.
Environment Description. Our approach employs a com-
prehensive Pythonic environment abstraction that captures
the complete interaction system. It encapsulates detailed
robot joint configurations, and object-environment specifi-
cations from public documents, enabling LLM to generate
precise guidance functions that account for the full com-
plexity of dexterous manipulation tasks.
Other Details. As previous works [54], once the guidance
function code is generated, we execute the code in inter-
preter. This step may give us valuable feedback, e.g., syn-
tax errors and runtime errors. We utilize the feedback from
code execution as a tool for ongoing refinement within the
LLM. Besides, our approach uses few-shot hints instead of
examples to allow the model to access relevant functions
and best practices without direct examples. Each guidance
component is normalized over the trajectory horizon to en-
sure balanced contributions across objectives while preserv-
ing their temporal structure. Detailed examples of prompts
and generated guidance functions are shown in Appx. E.

6. Experiments
We evaluate our DexHandDiff on five challenging dexter-
ous manipulation tasks with four from Adroit Hand [41] and
one from Shadow Hand environment [38]. Both environ-
ments feature a 24-joint Shadow Hand simulator with up to

30 degrees of freedom, designed to closely match the hard-
ware setting [44]. Detailed explanations of the five tasks are
provided in Appendix B. We use the expert demonstrations
collected by teleoperation from D4RL [18] for Adroit tasks
(Door, Hammer, Pen and Relocate). However, Shadow
Hand environment does not provide demonstration data, so
we employ TQC+HER [3, 26] to collect 5000 expert trajec-
tories for the Block Rotate-Z task.

6.1. Performance Comparisons on Goal Adaptabil-
ity in Interaction-Aware Tasks

We evaluate DexHandDiff in the Door environment to test
its goal adaptability across various target angles. Specifi-
cally, we require the planners to open the door to 30, 50, 70,
90 and 110 degrees, as well as close the door (reversal task).
Note that the training data only includes 90-degree door-
opening demonstrations. For some of these tasks, we ad-
just the environment settings, such as expanding the door’s
range of motion, to satisfy the evaluation requirements.

We compare DexHandDiff with five baselines: two
classifier-guided methods (Diffuser [24] with Goal Inpaint-
ing that sets discrete goal states, and Diffuser with Guided
Sampling that leverages continuous gradients for fine con-
trol), two classifier-free methods (Decision Diffuser [1] and
Diffusion Policy [14] that apply diffusion on states and
actions respectively), and a variant of DexHandDiff (de-
noted DexHandDiff-disc.) that uses goal inpainting. To
enhance classifier-free methods’ learning of goal condition,
we use the difference between the current door angle and
target angle as the condition, rather than a fixed 90◦ target.

The results are shown in Tab. 2. Classifier-free meth-
ods perform well on the 90◦ task, but their success declines
sharply on new target angles, indicating limited adaptabil-
ity to out-of-distribution targets. Classifier-guided methods
demonstrate moderate but consistent performance across
goal-adaptive tasks yet their overall success rates remain
suboptimal due to imprecise state-action relation modeling
in the policy. Our DexHandDiff achieves consistently high
success rates across nearly all tasks. The slightly lower per-
formance (90.0%) on the training task (90◦) compared to
classifier-free methods stems from our additional guidance
for adaptation. When ablating this, DexHandDiff achieves
96.7±4.7% success rate on Open 90◦, which is a reasonable
trade-off for better generalization. Averaging a 59.2% suc-
cess rate, over twice that of the next best method (29.5%),
DexHandDiff demonstrates robust adaptability across both
in-domain and goal-adaptive scenarios.

Besides, we also observe a trend that goals closer to the
original training data don’t have higher success rates than
others. We suppose it’s because when target angle is close
to training, learned dynamics often override guidance. We
observed 8 out of 14 failures in 30 tries in 70◦ task opened
to 90◦ instead, supporting our hypothesis. This learned bias
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Method Condition Open 30◦ Open 50◦ Open 70◦ Open 90◦ Open 110◦ Close Door Average

Diffuser [24] Goal Inpainting 16.7 ±4.7 16.7 ±12.5 6.7 ±4.7 56.7 ±9.4 10.0 ±8.2 0 17.8
Diffuser [24] Guided Sampling 10.0 ±8.2 26.7 ±17.0 10.0 ±4.7 63.3 ±18.7 6.7 ±9.4 60.0 ±8.2 29.5

Decision Diffuser [1] Embedding 0 3.3 ±4.7 16.7 ±4.7 100 ±0 30.0 ±8.2 0 25.0

Diffusion Policy [14] Embedding 16.7 ±4.7 3.3 ±4.7 13.3 ±12.5 100 ±0 3.3 ±4.7 0 22.8

DexHandDiff-disc. Goal Inpainting 46.7 ±4.7 13.3 ±9.4 53.3 ±4.7 20.0 ±8.2 6.7 ±4.7 0 23.3
DexHandDiff (Ours) Guided Sampling 70.0 ±8.2 56.7 ±4.7 53.3 ±8.2 90.0 ±8.2 26.7 ±14.1 58.3 ±13.4 59.2

Table 2. Success rates (in %) of different diffusion-based approaches in Adroit Hand [41] environment. All models were trained on
the Open 90° task only, and we test their adaptability to other task goals in Adroit Door environment. All results and standard deviation
are calculated over 3 tries for 10 random seeds. Best methods and those within 5% of the best are highlighted in bold.

Environment Task Diffuser [24] (Inpaint) Conditional DP [1, 14] DexHandDiff (Ours)

Door Open 90◦ 56.7 ±9.4 100 ±0 90.0 ±8.2

Door Open 30◦ 16.7 ±4.7 16.7 ±4.7 70.0 ±8.2

Pen Full Re-orientation 10.0 ±0 80.0 ±8.2 93.3 ±4.7

Pen Half-side Re-orientation 3.3 ±4.7 23.3 ±9.4 40.0 ±8.2

Hammer Nail Full Drive 53.3 ±9.4 76.7 ±9.4 90.0 ±8.2

Hammer Nail Half Drive 23.3 ±12.5 33.3 ±4.7 46.7 ±12.5

Relocate Full Relocation 56.7 ±4.7 96.7 ±4.7 96.7 ±4.7

Relocate Half-side Relocation 53.3 ±4.7 86.7 ±12.5 93.3 ±4.7

Manipulate Block Rotate-Z 36.7 ±12.5 40.0 ±8.2 50.0 ±8.2

Manipulate Block Half-side Rotate-Z 30.0 ±0 26.7 ±4.7 36.7 ±4.7

Average 34.0 58.0 70.7

Table 3. Overall performance of dexterous manipulation with goal adaptability on multiple environments and tasks. We compare
our method with one classifier-guided baseline and one classifier-free baseline. The results are calculated over 3 tries for 10 random seeds.

is harder to correct than for more distant angles.

6.2. Evaluation on Various Dexterous Tasks

To evaluate the cross-task adaptability and goal-oriented
performance of DexHandDiff, we test it across multiple
dexterous manipulation tasks in Door, Pen, Hammer, Re-
locate and Block environments, as summarized in Tab. 3.
In addition to the Door task, the Pen task involve aligning
a pen to the specified orientation, with a particularly chal-
lenging goal-adaptability variant, Half-side Re-orientation,
where training data includes only right-hemisphere orien-
tations while test goals require left-hemisphere rotations.
Similarly, the Block Rotate-Z and Object Relocation tasks
have block’s half-side variant trained on positive goal yaw
angles but tested on negative ones and object’s target right-
half table training but left-half testing. The Nail Half Drive
requires the hand to drive a nail and stop halfway before
retracting, testing control precision for partial goals.

We compare DexHandDiff with two baselines: Dif-
fuser [24] (Inpainting), using classifier-guided goal inpaint-
ing as in the previous section, and Conditional DP [1, 14], a
classifier-free approach with state diffusion for Door, Ham-
mer and Relocate tasks while action diffusion for Pen and
Block tasks, as modeling dynamics for these tasks are par-
ticularly challenging, making direct action generation more
effective than state-based diffusion. As shown in Tab. 3,

Adapt Tasks Door 30◦ Door 70◦ Pen Half Hammer Half Relocate Half

Diffuser [24] 4.19 4.03 5.23 4.01 5.48
DexHandDiff 2.92 2.38 2.76 2.41 3.22

Table 4. Quantitative results for preventing ghost states over 3
tries. (Conditional DP is not included due to its action-only.)

DexHandDiff consistently achieves superior results across
both in-domain and goal-adaptive tasks. Although condi-
tional DP demonstrates 23.3% on the challenging pen half-
side re-orientation, leveraging the inherent multi-modality
and anisotropy of diffusion models, DexHandDiff still per-
forms better (40.0%). These results underscore DexHand-
Diff’s robustness and adaptability across a range of tasks,
demonstrating generalization on familiar goals and novel
configuration challenges.

6.3. Validation for Preventing Ghost States
We measured L2 distance between predicted and simulated
hand-object states (normalized per dimension for fair com-
parison) in Tab. 4. DexHandDiff nearly halves baseline’s
gap across tasks, illustrating its ghost-state reduction effect.

6.4. Ablation on LLM-based Guidance Generation
Table 5 presents results for different guidance methods on
goal adaptability tasks. All three methods are based on
the same joint state-action diffusion model. The Human
Craft approach reflects our above results with manually de-
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Train Data (Right Half) Inference (Left Half Re-orientation) Pen Aligned, Hand Stabilizes

Train Data (Open 90°) Inference (Open 30°) Door Held in Position, Hand Released Train Data (Full Drive) Inference (Half Drive) Nail Partially Driven, Hammer Retracts

Train Data (Goal Yaw Positive) Inference (Goal Yaw Negative) 

Figure 4. Visualization results of goal-adaptive tasks by DexHandDiff. For each task, training data sample (with orange stroke) is
followed by inference on novel goals beyond the training data. In the Door task, DexHandDiff guides the door to new target angle (30◦)
and holds the door in position when the hand releases, which cannot be attained by simply truncating actions from 90◦ training data.
DexHandDiff avoids ghost states and achieves better goal adaptability.

Task Naı̈ve Guide Human Craft LLM Gen

Door Open 30◦ 0 70.0 ±8.2 40.0 ±8.2

Pen Half-side Re-orien 20.0 ±8.2 40.0 ±8.2 26.7 ±4.7

Hammer Half Nail 20.0 ±8.2 46.7 ±12.5 43.3 ±9.4

Table 5. Ablation study on LLM-based guidance generation.

signed guidance. LLM Gen generate guidance functions
with Claude Sonnet 3.5 [5]. And Naı̈ve Guide directly
guides the object to the goal, corresponding to ghost-state
existing baseline. Results indicate that both Human Craft
and LLM Gen significantly outperform Naı̈ve Guide across
tasks, with Human Craft achieving the highest success rates.

6.5. Ablation Study of DexHandDiff Framework
We analyze the contribution of each component in Dex-
HandDiff through ablation studies (Tab. 6), across multiple
door-opening tasks (open 30◦, 50◦, 70◦, and 90◦), using the
same training checkpoint for fair comparison. The base-
line Diffuser[24] uses a basic goal-guidance strategy, while
Dyn-guide enhances it with dynamics guidance for bet-
ter state-action consistency. Joint S&A adopts joint state-
action denoising like DexHandDiff but retains naive goal
guidance. DexHandDiff incorporates all components and
achieves the highest success rate of 67.5%, significantly
outperforming the other configurations and demonstrating
the effectiveness of our full design.

6.6. Visualizations
We visualize the behavior of DexHandDiff across vari-
ous goal-adaptive dexterous tasks in Fig. 4. DexHand-
Diff ensures realistic contact by aligning hands with con-
tact points first using joint dynamics modeling, eliminating
ghost states. Notably, for example, DexHandDiff guides the
door to new target angle and holds the door steady when the
hand releases , which cannot be achieved by policies trained
with slicing 90◦ data. These results underscore DexHand-
Diff’s ability to maintain physically realistic interactions
while adapting to novel goals.

Method Goal
Guidance

Dynamics
Guide

Joint State
Action

Interact
Mechanism

Overall
SR

No-guide × × × × 24.1
Diffuser [24] ✓ × × × 27.5
Dyn-guide ✓ ✓ × × 27.5
Joint S&A ✓ × ✓ × 30.8
Dyn+Joint ✓ ✓ ✓ × 31.7

DexHandDiff ✓ ✓ ✓ ✓ 67.5

Table 6. Ablation study on DexHandDiff framework. We report
the average success rates (overall SR) on Adroit Door environment
over open 30◦, 50◦, 70◦ and 90◦ tasks.

6.7. Efficiency
We test the control frequency of DexHandDiff on an RTX
3090 with receding horizon set as 8 for all tasks except Door
(32 instead). The control frequency are reported below.

Task Door Pen Hammer Relocate Block

Freq. 5.04 Hz 5.88 Hz 5.86 Hz 5.78 Hz 6.92 Hz

Table 7. Control command frequency over 10 tries.
Besides, our lightweight model (3.96M params,

3.27 GFLOPS) can be further accelerated via DPM
Solver++ [31] (4x speedup) and command interpolation
(reaching 36 Hz), sufficient for real robot control.

7. Conclusion
This work presents DexHandDiff, an interaction-aware dif-
fusion planner for adaptive dexterous manipulation. By
modeling joint state-action dynamics and incorporating a
dual-phase diffusion mechanism, it addresses action-state
consistency issues, including the “ghost state” and gener-
alization problems observed in previous diffusion methods.
DexHandDiff’s design enables it to handle intricate multi-
contact interactions through a pre-contact alignment and a
post-contact control. We believe its potential to advance
the field toward diverse dexterous tasks while remaining
grounded in real physics and dynamics.
Future Work can investigate deployment with hand states
sensed and object poses estimated by vision models.
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