--- configs: - config_name: clinical data_files: - split: gatortron path: Clinical Data (gatortron-base)/* - split: biobert path: Clinical Data (biobert)/* - config_name: pathology_report data_files: - split: gatortron path: Pathology Report (gatortron-base)/* - config_name: wsi data_files: - split: uni path: Slide Image (UNI)/* - config_name: molecular data_files: - split: senmo path: Molecular (SeNMo)/* - config_name: radiology data_files: - split: remedis path: Radiology (REMEDIS)/* - split: radimagenet path: Radiology (RadImageNet)/* language: - en tags: - medical - multimodal - tcga pretty_name: TCGA license: cc-by-nc-nd-4.0 --- # Dataset Card for The Cancer Genome Atlas (TCGA) Multimodal Dataset The Cancer Genome Atlas (TCGA) Multimodal Dataset is a comprehensive collection of clinical data, pathology reports, and slide images for cancer patients. This dataset aims to facilitate research in multimodal machine learning for oncology by providing embeddings generated using state-of-the-art models such as GatorTron and UNI. - **Curated by:** Lab Rasool - **Language(s) (NLP):** English ## Uses ```python from datasets import load_dataset clinical_dataset = load_dataset("Lab-Rasool/TCGA", "clinical", split="gatortron") biobert_clinical_dataset = load_dataset("Lab-Rasool/TCGA", "clinical", split="biobert") pathology_report_dataset = load_dataset("Lab-Rasool/TCGA", "pathology_report", split="gatortron") wsi_dataset = load_dataset("Lab-Rasool/TCGA", "wsi", split="uni") molecular_dataset = load_dataset("Lab-Rasool/TCGA", "molecular", split="senmo") remedis_radiology_dataset = load_dataset("Lab-Rasool/TCGA", "radiology", split="remedis") radimagenet_radiology_dataset = load_dataset("Lab-Rasool/TCGA", "radiology", split="radimagenet") ``` Example code for loading HF dataset into a PyTorch Dataloader. **Note**: Some embeddings are stored as buffers due to their multi-dimensional shape. ```python from datasets import load_dataset import os from torch.utils.data import Dataset import numpy as np class CustomDataset(Dataset): def __init__(self, hf_dataset): self.hf_dataset = hf_dataset def __len__(self): return len(self.hf_dataset) def __getitem__(self, idx): hf_item = self.hf_dataset[idx] embedding = np.frombuffer(hf_item["embedding"], dtype=np.float32) embedding_shape = hf_item["embedding_shape"] embedding = embedding.reshape(embedding_shape) return embedding if __name__ == "__main__": clinical_dataset = load_dataset("Lab-Rasool/TCGA", "clinical", split="gatortron") wsi_dataset = load_dataset("Lab-Rasool/TCGA", "wsi", split="uni") for index, item in enumerate(clinical_dataset): print(np.frombuffer(item.get("embedding"), dtype=np.float32).reshape(item.get("embedding_shape")).shape) break ``` ## Dataset Creation #### Data Collection and Processing The raw data for this dataset was acquired using MINDS, a multimodal data aggregation tool developed by Lab Rasool. The collected data includes clinical information, pathology reports, and whole slide images from The Cancer Genome Atlas (TCGA). The embeddings were generated using the HoneyBee embedding processing tool, which utilizes foundational models such as GatorTron and UNI. #### Who are the source data producers? The source data for this dataset was originally collected and maintained by The Cancer Genome Atlas (TCGA) program, a landmark cancer genomics project jointly managed by the National Cancer Institute (NCI). ## Citation ``` @article{honeybee, title={HoneyBee: A Scalable Modular Framework for Creating Multimodal Oncology Datasets with Foundational Embedding Models}, author={Aakash Tripathi and Asim Waqas and Yasin Yilmaz and Ghulam Rasool}, year={2024}, eprint={2405.07460}, archivePrefix={arXiv}, primaryClass={cs.LG} } @article{waqas2024senmo, title={SeNMo: A self-normalizing deep learning model for enhanced multi-omics data analysis in oncology}, author={Waqas, Asim and Tripathi, Aakash and Ahmed, Sabeen and Mukund, Ashwin and Farooq, Hamza and Schabath, Matthew B and Stewart, Paul and Naeini, Mia and Rasool, Ghulam}, journal={arXiv preprint arXiv:2405.08226}, year={2024} } ``` ### For more information about the data acquisition and processing tools used in creating this dataset, please refer to the following resources: - MINDS paper: https://pubmed.ncbi.nlm.nih.gov/38475170/ - MINDS codebase: https://github.com/lab-rasool/MINDS - HoneyBee paper: https://arxiv.org/abs/2405.07460 - HoneyBee codebase: https://github.com/lab-rasool/HoneyBee/ ## Contact Information For any questions or issues, please contact the dataset curators at [aakash.tripathi@moffitt.org].