temperatures_Celsius_France / _visualisation.py
La-matrice's picture
Upload _visualisation.py
aea476e
from pathlib import Path
import pyarrow.parquet as pq
import pandas as pd
def summarize_parquet_metadata(path_str: str) -> pd.DataFrame:
path = Path(path_str)
files = [path] if path.is_file() else list(path.rglob("*.parquet"))
cols = {}
for f in files:
pf = pq.ParquetFile(f)
schema = pf.schema_arrow
logical_types = {name: schema.field(i).type for i, name in enumerate(schema.names)}
md = pf.metadata
for rg_idx in range(md.num_row_groups):
rg = md.row_group(rg_idx)
for c_idx in range(rg.num_columns):
c_md = rg.column(c_idx)
name = c_md.path_in_schema
stats = c_md.statistics
if stats is None:
# Pas de stats écrites pour cette colonne/row group
continue
entry = cols.setdefault(name, {
"dtype": str(logical_types.get(name, "")),
"min": None, "max": None, "nulls": 0, "rows": 0
})
entry["nulls"] += stats.null_count or 0
entry["rows"] += rg.num_rows
vmin, vmax = stats.min, stats.max
# Décode éventuels bytes (string/binary)
if isinstance(vmin, (bytes, bytearray)):
try: vmin = vmin.decode("utf-8", "replace")
except Exception: pass
if isinstance(vmax, (bytes, bytearray)):
try: vmax = vmax.decode("utf-8", "replace")
except Exception: pass
if entry["min"] is None or (vmin is not None and vmin < entry["min"]):
entry["min"] = vmin
if entry["max"] is None or (vmax is not None and vmax > entry["max"]):
entry["max"] = vmax
if not cols:
return pd.DataFrame(columns=["dtype", "min", "max", "nulls", "rows"])
return pd.DataFrame.from_dict(cols, orient="index") \
.rename_axis("column") \
.sort_index()
summary = summarize_parquet_metadata("fr-astrotemp-1h_1900-12_to_2025-08_norm_v1.parquet")
print(summary)