Datasets:
Enhance dataset card: Add comprehensive metadata and usage examples for KC-MMBench (#2)
Browse files- Enhance dataset card: Add comprehensive metadata and usage examples for KC-MMBench (bf7f58c3104955752208a29eca94dfaeaea26df5)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
@@ -1,14 +1,32 @@
|
|
1 |
---
|
2 |
-
license: cc-by-sa-4.0
|
3 |
language:
|
4 |
- zh
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
---
|
6 |
-
<font size=3><div align='center' > [[π Home Page](https://kwai-keye.github.io/)] [[π Technical Report](https://huggingface.co/papers/2507.01949)] [[π Models](https://huggingface.co/Kwai-Keye)] [[π Demo](https://huggingface.co/spaces/Kwai-Keye/Keye-VL-8B-Preview)] </div></font>
|
7 |
|
|
|
|
|
|
|
8 |
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
If you want to use KC-MMbench, please download with: git clone https://huggingface.co/datasets/Kwai-Keye/KC-MMbench
|
12 |
## Tasks
|
13 |
| Task | Description |
|
14 |
| -------------- | --------------------------------------------------------------------------- |
|
@@ -19,7 +37,6 @@ If you want to use KC-MMbench, please download with: git clone https://huggingfa
|
|
19 |
| High_Like | A binary classification task to determine the rate of likes of a short video. |
|
20 |
| SPU | The task of determining whether two items are the same product in e-commerce. |
|
21 |
|
22 |
-
|
23 |
## Performance
|
24 |
| Task | Qwen2.5-VL-3B | Qwen2.5-VL-7B | InternVL-3-8B | MiMo-VL-7B | Kwai Keye-VL-8B |
|
25 |
| -------------- | ------------- | ------------- | ------------- | ------- | ---- |
|
@@ -30,13 +47,63 @@ If you want to use KC-MMbench, please download with: git clone https://huggingfa
|
|
30 |
| High_Like | 48.85 | 47.94 | 47.03 | 51.14 | 55.25 |
|
31 |
| SPU | 74.09 | 81.34 | 75.64 | 81.86 | 87.05 |
|
32 |
|
33 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
Here is an example of an evaluation using VLMs on our datasets. The following configuration needs to be added to the config file.
|
36 |
```python
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
"data": {
|
41 |
"CPV": {
|
42 |
"class": "KwaiVQADataset",
|
@@ -64,3 +131,4 @@ Here is an example of an evaluation using VLMs on our datasets. The following co
|
|
64 |
}
|
65 |
}
|
66 |
}
|
|
|
|
1 |
---
|
|
|
2 |
language:
|
3 |
- zh
|
4 |
+
- en
|
5 |
+
license: cc-by-sa-4.0
|
6 |
+
task_categories:
|
7 |
+
- video-text-to-text
|
8 |
+
tags:
|
9 |
+
- multimodal
|
10 |
+
- video-understanding
|
11 |
+
- short-video
|
12 |
+
- benchmark
|
13 |
+
- e-commerce
|
14 |
+
- vqa
|
15 |
+
library_name:
|
16 |
+
- transformers
|
17 |
---
|
|
|
18 |
|
19 |
+
<font size=3><div align='center' > [[π Home Page](https://kwai-keye.github.io/)] [[π Technical Report](https://huggingface.co/papers/2507.01949)] [[\ud83d\udcca Models](https://huggingface.co/Kwai-Keye)] [[\ud83d\ude80 Demo](https://huggingface.co/spaces/Kwai-Keye/Keye-VL-8B-Preview)] </div></font>
|
20 |
+
|
21 |
+
This repository contains **KC-MMBench**, a new benchmark dataset meticulously tailored for real-world short-video scenarios, as presented in the paper "[Kwai Keye-VL Technical Report](https://huggingface.co/papers/2507.01949)". Constructed from [Kuaishou](https://www.kuaishou.com/) short video data, KC-MMBench comprises 6 distinct datasets designed to evaluate the performance of Vision-Language Models (VLMs) like [**Kwai Keye-VL-8B**](https://huggingface.co/Kwai-Keye/Keye-VL-8B-Preview), Qwen2.5-VL, and InternVL in comprehending dynamic, information-dense short-form videos.
|
22 |
|
23 |
+
For the associated code, detailed documentation, and evaluation scripts, please refer to the official [Kwai Keye-VL GitHub repository](https://github.com/Kwai-Keye/Kwai-Keye-VL).
|
24 |
+
|
25 |
+
If you want to use KC-MMbench, please download with:
|
26 |
+
```bash
|
27 |
+
git clone https://huggingface.co/datasets/Kwai-Keye/KC-MMbench
|
28 |
+
```
|
29 |
|
|
|
30 |
## Tasks
|
31 |
| Task | Description |
|
32 |
| -------------- | --------------------------------------------------------------------------- |
|
|
|
37 |
| High_Like | A binary classification task to determine the rate of likes of a short video. |
|
38 |
| SPU | The task of determining whether two items are the same product in e-commerce. |
|
39 |
|
|
|
40 |
## Performance
|
41 |
| Task | Qwen2.5-VL-3B | Qwen2.5-VL-7B | InternVL-3-8B | MiMo-VL-7B | Kwai Keye-VL-8B |
|
42 |
| -------------- | ------------- | ------------- | ------------- | ------- | ---- |
|
|
|
47 |
| High_Like | 48.85 | 47.94 | 47.03 | 51.14 | 55.25 |
|
48 |
| SPU | 74.09 | 81.34 | 75.64 | 81.86 | 87.05 |
|
49 |
|
50 |
+
## Usage
|
51 |
+
|
52 |
+
This section provides a quick guide on how to interact with models using the `keye-vl-utils` library, which is essential for processing and integrating visual language information with Keye Series Models like Kwai Keye-VL-8B.
|
53 |
+
|
54 |
+
### Install `keye-vl-utils`
|
55 |
+
|
56 |
+
First, install the necessary utility library:
|
57 |
+
```bash
|
58 |
+
pip install keye-vl-utils
|
59 |
+
```
|
60 |
+
|
61 |
+
### Keye-VL Inference Example
|
62 |
+
|
63 |
+
Here's an example of performing inference with a Kwai Keye-VL model, demonstrating how to prepare inputs for both image and video scenarios.
|
64 |
|
|
|
65 |
```python
|
66 |
+
from transformers import AutoModel, AutoProcessor
|
67 |
+
from keye_vl_utils import process_vision_info
|
68 |
+
|
69 |
+
# default: Load the model on the available device(s)
|
70 |
+
model_path = "Kwai-Keye/Keye-VL-8B-Preview"
|
71 |
+
|
72 |
+
model = AutoModel.from_pretrained(
|
73 |
+
model_path, torch_dtype="auto", device_map="auto", attn_implementation="flash_attention_2", trust_remote_code=True,
|
74 |
+
).to('cuda')
|
75 |
+
|
76 |
+
# Example messages demonstrating various input types (image, video)
|
77 |
+
messages = [
|
78 |
+
# Image Input Examples
|
79 |
+
[{"role": "user", "content": [{"type": "image", "image": "file:///path/to/your/image.jpg"}, {"type": "text", "text": "Describe this image."}]}],
|
80 |
+
[{"role": "user", "content": [{"type": "image", "image": "http://path/to/your/image.jpg"}, {"type": "text", "text": "Describe this image."}]}],
|
81 |
+
[{"role": "user", "content": [{"type": "image", "image": "data:image;base64,/9j/..."}, {"type": "text", "text": "Describe this image."}]}],
|
82 |
+
|
83 |
+
# Video Input Examples (most relevant for KC-MMBench)
|
84 |
+
[{"role": "user", "content": [{"type": "video", "video": "file:///path/to/video1.mp4"}, {"type": "text", "text": "Describe this video."}]}],
|
85 |
+
[{"role": "user", "content": [{"type": "video", "video": ["file:///path/to/extracted_frame1.jpg", "file:///path/to/extracted_frame2.jpg", "file:///path/to/extracted_frame3.jpg"],}, {"type": "text", "text": "Describe this video."},],}],
|
86 |
+
[{"role": "user", "content": [{"type": "video", "video": "file:///path/to/video1.mp4", "fps": 2.0, "resized_height": 280, "resized_width": 280}, {"type": "text", "text": "Describe this video."}]}],
|
87 |
+
]
|
88 |
+
|
89 |
+
processor = AutoProcessor.from_pretrained(model_path)
|
90 |
+
# Note: model loaded above already
|
91 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
92 |
+
images, videos, video_kwargs = process_vision_info(messages, return_video_kwargs=True)
|
93 |
+
inputs = processor(text=text, images=images, videos=videos, padding=True, return_tensors="pt", **video_kwargs).to("cuda")
|
94 |
+
generated_ids = model.generate(**inputs)
|
95 |
+
print(generated_ids)
|
96 |
+
```
|
97 |
|
98 |
+
### Evaluation
|
99 |
+
|
100 |
+
For detailed instructions on how to evaluate models using the KC-MMBench datasets, including setup and running evaluation scripts, please refer to the `evaluation/KC-MMBench/README.md` file in the official [Kwai Keye-VL GitHub repository](https://github.com/Kwai-Keye/Kwai-Keye-VL/tree/main/evaluation/KC-MMBench).
|
101 |
+
|
102 |
+
Below is the example configuration for evaluation using VLMs on our datasets:
|
103 |
+
|
104 |
+
```python
|
105 |
+
{
|
106 |
+
"model": "...", # Specify your model
|
107 |
"data": {
|
108 |
"CPV": {
|
109 |
"class": "KwaiVQADataset",
|
|
|
131 |
}
|
132 |
}
|
133 |
}
|
134 |
+
```
|