--- language: pl size_categories: 100K str: return "pyg_judgment_graph.pt" @property def processed_file_names(self) -> list[str]: return ["processed_pyg_judgment_graph.pt", "index_map.pt"] def download(self) -> None: os.makedirs(self.root, exist_ok=True) download_url(self.URL + self.raw_file_names, self.raw_dir) def process(self) -> None: dataset = torch.load(self.raw_paths[0]) data = dataset["data"] if self.pre_transform is not None: data = self.pre_transform(data) data_file, index_file = self.processed_paths self.save([data], data_file) torch.save( { "judgment_idx_2_iid": dataset["judgment_idx_2_iid"], "legal_base_idx_2_isap_id": dataset["legal_base_idx_2_isap_id"], }, index_file, ) def __repr__(self) -> str: return f"{self.__class__.__name__}({len(self)})" ds = PlCourtGraphDataset(root_dir="data/datasets/pyg") print(ds) ``` ## Licensing Information We license the actual packaging of these data under Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/