import json from typing import List, Hashable, Union from collections import Counter def is_sequence_valid(sequence: List[Union[Hashable, str]], case_sensitive: bool = False, strip_spaces: bool = True, fuzzy_duplicates: bool = False, fuzzy_threshold: float = 0.6) -> bool: """ 检查序列是否合法(无重复元素) 参数: sequence: 待检查的序列 case_sensitive: 是否区分大小写(仅适用于字符串) strip_spaces: 是否去除字符串两端空格 fuzzy_duplicates: 是否启用模糊查重(仅适用于字符串) fuzzy_threshold: 模糊匹配阈值(0-1) 返回: bool: True表示无重复(合法),False表示有重复(非法) 示例: >>> is_sequence_valid(["A", "B", "C"]) # True >>> is_sequence_valid(["A", "a"], case_sensitive=False) # False >>> is_sequence_valid([" apple ", "apple"]) # False """ if not sequence: return True processed = [] # print(sequence) for item in sequence: # print(item) if isinstance(item, str): # 字符串预处理 processed_item = item if not case_sensitive: processed_item = processed_item.lower() if strip_spaces: processed_item = processed_item.strip() processed.append(processed_item) else: processed.append(item) # 常规检查(精确匹配) # print(processed) if not fuzzy_duplicates: return len(processed) == len(set(processed)) # 模糊查重模式 for i in range(len(processed)): for j in range(i + 1, len(processed)): if isinstance(processed[i], str) and isinstance(processed[j], str): # 使用difflib进行模糊匹配 from difflib import SequenceMatcher similarity = SequenceMatcher(None, processed[i], processed[j]).ratio() if similarity >= fuzzy_threshold: return False else: # 非字符串类型退化为精确匹配 if processed[i] == processed[j]: return False return True def extract_answers_from_file(file_path): """ 从JSON文件中读取数据并提取answer序列 参数: file_path: str - JSON文件路径 返回: dict - 包含提取序列和元数据的字典 """ try: # 读取JSON文件 with open(file_path, 'r', encoding='utf-8') as f: input_data = json.load(f) # 初始化结果字典 result = { "sequences": [], "details": [] } # 遍历每个条目 for key, item in input_data.items(): # 检查answer字段是否存在 if 'answer' not in item: continue # 提取answer并按逗号分割成序列,去除前后空格 answer_sequence = [x.strip() for x in str(item['answer']).split(',')] # 存储序列和相关信息 result["sequences"].append(answer_sequence) result["details"].append({ "question_id": item.get("question_id", ""), "figure_path": item.get("figure_path", ""), "qtype": item.get("qtype", -1), "question": item.get("question", ""), "sequence_length": len(answer_sequence) }) return result except FileNotFoundError: print(f"错误:文件 {file_path} 未找到") return None except json.JSONDecodeError: print("错误:文件内容不是有效的JSON格式") return None except Exception as e: print(f"处理文件时发生错误:{str(e)}") return None from difflib import SequenceMatcher from typing import List, Union, Optional def fuzzy_match(s1: str, s2: str, threshold: float = 0.6) -> bool: """ 模糊字符串匹配(基于相似度阈值) :param s1: 字符串1 :param s2: 字符串2 :param threshold: 相似度阈值(0-1) :return: 是否匹配 """ flag = False flag |= SequenceMatcher(None, s1.lower().strip(), s2.lower().strip()).ratio() >= threshold flag |= s1 in s2 flag |= s2 in s1 # print(s1 , s2 , SequenceMatcher(None, s1.lower().strip(), s2.lower().strip()).ratio(),flag) return flag def is_sequence_match_ordered( seq1: List[str], seq2: List[str], fuzzy: bool = False, threshold: float = 0.6 ) -> bool: """ 检查两个序列是否顺序完全一致 :param seq1: 序列1 :param seq2: 序列2 :param fuzzy: 是否启用模糊匹配 :param threshold: 模糊匹配阈值 :return: 是否匹配 """ if len(seq1) != len(seq1): return False if not is_sequence_valid(seq1, case_sensitive=True): return False if not is_sequence_valid(seq2, case_sensitive=True): return False # print(seq1 , seq2) if fuzzy: return all(fuzzy_match(x, y, threshold) for x, y in zip(seq1, seq2)) else: return all(x.strip().lower() == y.strip().lower() for x, y in zip(seq1, seq2)) def is_sequence_match_unordered( seq1: List[str], seq2: List[str], fuzzy: bool = False, threshold: float = 0.8 ) -> bool: """ 检查两个序列是否元素一致(不考虑顺序) :param seq1: 序列1 :param seq2: 序列2 :param fuzzy: 是否启用模糊匹配 :param threshold: 模糊匹配阈值 :return: 是否匹配 """ if len(seq1) != len(seq2): return False seq1_processed = [s.lower().strip() for s in seq1] seq2_processed = [s.lower().strip() for s in seq2] if fuzzy: # 构建双向最佳匹配 matched_indices = set() for i, s1 in enumerate(seq1): for j, s2 in enumerate(seq2): if j not in matched_indices and fuzzy_match(s1, s2, threshold): matched_indices.add(j) break return len(matched_indices) == len(seq1) else: return sorted(seq1_processed) == sorted(seq2_processed) # 测试用例 if __name__ == "__main__": A = "Russia, DR Congo, Ethiopia, Bangladesh, Iraq, Yemen, Pakistan, India" B = "Russia: 2 \nD.R. Congo: 3 \nEthiopia: 5 \nBangladesh: 5 \nIraq: 7 \nYemen: 7 \nPakistan: 12 \nIndia: 134" B = B.replace("\n", ",") B = B.replace(" ", "") A = A.replace(" ", "") print(is_sequence_match_ordered(A.split(","), B.split(","), fuzzy=True)) # 测试数据 exact_ordered = ["Apple", "Banana", "Orange"] exact_unordered = ["Banana", "Orange", "Apple"] fuzzy_ordered = [" Apple ", "banana", "Orang"] fuzzy_unordered = ["banan", "orang", " apple"] # 精确顺序匹配测试 print("精确顺序匹配:") print(exact_ordered, exact_ordered, is_sequence_match_ordered(exact_ordered, exact_ordered)) # True print(exact_ordered, exact_unordered, is_sequence_match_ordered(exact_ordered, exact_unordered)) # False # 精确无序匹配测试 print("\n精确无序匹配:") print(exact_ordered, exact_unordered, is_sequence_match_unordered(exact_ordered, exact_unordered)) # True print(exact_ordered, ["Apple", "Banana"], is_sequence_match_unordered(exact_ordered, ["Apple", "Banana"])) # False # 模糊顺序匹配测试 print("\n模糊顺序匹配:") print(exact_ordered, fuzzy_ordered, is_sequence_match_ordered(exact_ordered, fuzzy_ordered, fuzzy=True)) # True print(exact_ordered, fuzzy_unordered, is_sequence_match_ordered(exact_ordered, fuzzy_unordered, fuzzy=True)) # False # 模糊无序匹配测试 print("\n模糊无序匹配:") print(exact_ordered, fuzzy_unordered, is_sequence_match_unordered(exact_ordered, fuzzy_unordered, fuzzy=True)) # True print(exact_ordered, ["App", "Banan"], is_sequence_match_unordered(exact_ordered, ["App", "Banan"], fuzzy=True)) # False answer = "Trondheim,Munich,TheHague,Muscat,RasAlKhaimah,Dubai,Taipei,Doha,Ajman,AbuDhabi" response = "Trondheim,Munich,TheHague,Muscat,RasAlKhaimah,Dubai,Taipei,Doha,Ajman,AbuDhabi" print(is_sequence_match_ordered(answer.split(","), response.split(","), fuzzy=True)) assert is_sequence_valid(["A", "B", "C"]) == True assert is_sequence_valid(["A", "A"]) == False # 大小写测试 assert is_sequence_valid(["A", "a"], case_sensitive=False) == False assert is_sequence_valid(["A", "a"], case_sensitive=True) == True # 空格处理测试 assert is_sequence_valid(["apple", " apple "]) == False assert is_sequence_valid(["apple", " apple "], strip_spaces=False) == True # 模糊匹配测试 assert is_sequence_valid(["apple", "applee"], fuzzy_duplicates=True) == False assert is_sequence_valid(["apple", "aple"], fuzzy_duplicates=True, fuzzy_threshold=0.8) == False assert is_sequence_valid(["apple", "orange"], fuzzy_duplicates=True) == True # 混合类型测试 assert is_sequence_valid([1, "1"]) == True assert is_sequence_valid([1, 1]) == False # 边界情况 assert is_sequence_valid([]) == True assert is_sequence_valid([None, None]) == False