import json import os from collections import defaultdict from compare_value import compare_value from compare_sequence import is_sequence_match_ordered, is_sequence_match_unordered from compare_str import fuzzy_string_match from compare_multiple import multiple_choice_checker def has_more_digits_than_other_chars(s): if isinstance(s, (int, float)): return True s = s.replace('.', '1') s = s.replace(',', '1') s = s.replace('$', '1') s = s.replace('B', '1') s = s.replace('T', '1') s = s.replace('K', '1') digit_count = 0 other_count = 0 for char in s: if char.isdigit(): digit_count += 1 else: other_count += 1 return digit_count > other_count def evaluate_answer(answer, response, qtype): if qtype in [1, 2, 101, 102]: if has_more_digits_than_other_chars(answer): return "Exact Numeric", compare_value(answer, response) else: return "Vague String", fuzzy_string_match(answer, response) elif qtype in [72, 54]: return "Exact Numeric", compare_value(answer, response) elif qtype in [10, 50, 51, 52, 110]: return "Vague Numeric", compare_value(answer, response, eps=0.05) elif qtype in [13, 103, 113]: if answer.lower() in response.lower(): return "Exact String", True return "Exact String", compare_value(answer, response) elif qtype in [40, 41, 42, 43, 44]: response = response.replace("\n", ",") response = response.replace(" ", "") answer = answer.replace(" ", "") return "Vague Unordered Sequence", is_sequence_match_unordered(answer.split(","), response.split(","), fuzzy=True) elif qtype in [60, 61, 70, 80, 90]: return "Vague String", fuzzy_string_match(answer, response) elif qtype in [71]: response = response.replace("\n\n", "") response = response.replace("\n", ",") response = response.replace(" ", "") response = response.replace("<", ",") response = response.replace(">", ",") if response.count(":") == 1: response = response[response.find(':') + 1:] answer = answer.replace(" ", "") return "Vague Ordered Sequence", is_sequence_match_ordered(answer.split(","), response.split(","), fuzzy=True) elif qtype in [30]: for an in answer: if is_sequence_match_ordered(an.split(","), response.split(","), fuzzy=True): return "Vague Ordered Sequence", True return "Vague Ordered Sequence", False elif qtype in [202,1919810,1919811,1919812]: return "Exact String", multiple_choice_checker(answer , response) else: print('there is no qtype',qtype) return "Exact Numeric", compare_value(answer, response) def process_json_data(json_data): results = [] stats = { 'qtype_stats': defaultdict(lambda: {'correct': 0, 'total': 0}), 'figure_stats': defaultdict(lambda: {'correct': 0, 'total': 0}), 'total_correct': 0, 'total_questions': 0 } for key, item in json_data.items(): question_id = item["question_id"] if 'qtype' in item: qtype = item["qtype"] elif 'qid' in item: qtype = item["qid"] else: qtype = 1 if "response" not in item or item['response'] == 'Error!': continue answer = str(item["answer"]) response = str(item["response"]) response = response.replace(" "," ") figure_path = item["figure_path"] if type(figure_path) == list: figure_path = figure_path[0] eval_method, score = evaluate_answer(answer, response, qtype) results.append({ "figure_path": figure_path, "answer": answer, "response": response, "question": item["question"] if "question" in item else "", "question_id": question_id, "qtype": qtype, "score": score, "eval_method": eval_method }) stats['qtype_stats'][qtype]['correct'] += score stats['qtype_stats'][qtype]['total'] += 1 stats['figure_stats'][figure_path]['correct'] += score stats['figure_stats'][figure_path]['total'] += 1 stats['total_correct'] += score stats['total_questions'] += 1 return results, stats def calculate_accuracy(correct, total): return round(correct / total * 100, 2) if total > 0 else 0.0 def generate_stat_report(stats): report = {} report['overall_accuracy'] = calculate_accuracy( stats['total_correct'], stats['total_questions']) qtype_report = {} for qtype, counts in stats['qtype_stats'].items(): qtype_report[f"qtype_{qtype}"] = { 'accuracy': calculate_accuracy(counts['correct'], counts['total']), 'correct': counts['correct'], 'total': counts['total'] } report['qtype_accuracy'] = qtype_report figure_report = {} for figure_path, counts in stats['figure_stats'].items(): figure_report[figure_path] = { 'accuracy': calculate_accuracy(counts['correct'], counts['total']), 'correct': counts['correct'], 'total': counts['total'] } report['figure_accuracy'] = figure_report return report from copy import deepcopy def evaluate(input_file, output_file=None, stats_file=None): os.makedirs(os.path.dirname(output_file), exist_ok=True) with open(input_file, 'r', encoding='utf-8') as f: data = json.load(f) if type(data).__name__=='list': __ = deepcopy(data) data = {} for _ in __: data[_['question_id']] = deepcopy(_) results, stats = process_json_data(data) report = generate_stat_report(stats) if output_file: with open(output_file, 'w', encoding='utf-8') as f: json.dump(results, f, indent=2, ensure_ascii=False) print(f"Score save to {output_file}") if stats_file: with open(stats_file, 'w', encoding='utf-8') as f: json.dump(report, f, indent=2, ensure_ascii=False) print(f"Statis saved to {stats_file}") print(f"Acc: {report['overall_accuracy']}% {stats['total_questions']}") return results, report