--- dataset_info: features: - name: question_id dtype: string - name: qtype dtype: string - name: figure_path dtype: image - name: visual_figure_path list: image - name: question dtype: string - name: answer dtype: string - name: instructions dtype: string - name: prompt dtype: string - name: options list: string splits: - name: info num_bytes: 9389294399.0 num_examples: 55091 - name: plain num_bytes: 15950918129.0 num_examples: 55091 - name: visual_metaphor num_bytes: 144053150.0 num_examples: 450 - name: visual_basic num_bytes: 1254942699.466 num_examples: 7297 download_size: 20376840742 dataset_size: 26739208377.466 configs: - config_name: default data_files: - split: info path: data/info-* - split: plain path: data/plain-* - split: visual_metaphor path: data/visual_metaphor-* - split: visual_basic path: data/visual_basic-* --- # InfoChartQA: Benchmark for Multimodal Question Answering on Infographic Charts 🤗[Dataset](https://huggingface.co/datasets/Jietson/InfoChartQA) # Dataset You can find our dataset on huggingface: 🤗[InfoChartQA Dataset](https://huggingface.co/datasets/Jietson/InfoChartQA) # Usage Each question entry is arranged as: ``` --question_id: int --qtype: int --figure_path: image --visual_figure_path: list of image --question: str --answer: str --instructions: str --prompt: str --options: list of dict ("A/B/C/D":"option_content") ``` Each question is built as: ``` image_input: figure_path, visual_figure_path_1...visual_figure_path_n (if any) text_iunput: prompt (if any) + question + options (if any) + instructions (if any) ``` # Evaluate You should store and evaluate model's response as: ```python # Example code for evaluate def build_question(query):#to build the question question = "" if "prompt" in query: question = question + f"{query["prompt"]}\n" question = question + f"{query["question"]}\n" if "options" in query: for _ in query["options"]: question = question + f"{_} {query['options'][_]}\n" if "instructions" in query: question = question + query["instructions"] return question with open("visual_basic.json","r",encode="utf-8") as f: queries = json.load(f) for idx in range(queries): question = build_question(queries[idx]) figure_path = [queries[idx]['figure_path']] visual_figure_path = queries[idx]['visual_figure_path'] response = model.generate(question, [figure_path, visual_figure_path])# generate model's response based on queries[idx]["response"] = reponse with open("model_reponse.json","w",encode="utf-8") as f: json.dump(queries, f) from checker import evaluate evaluate("model_reponse.json", "path_to_save_the_result") ```