InfoChartQA / eval /compare_str.py
Jietson's picture
Upload 8 files
f020aef verified
def is_string_match(answer, response, case_sensitive=False):
"""
判断两个字符串是否匹配,支持模糊子串匹配
参数:
answer: 预期字符串
response: 待检查字符串
case_sensitive: 是否区分大小写(默认不区分)
返回:
bool: 是否匹配
"""
if not case_sensitive:
answer = answer.lower()
response = response.lower()
# 1. 完全一致
if answer == response:
return True
# 2. answer是response的子串
if answer in response:
return True
# 3. 模糊匹配:允许少量字符不匹配(简单实现)
# 这里使用简单的子序列检查,可以根据需求替换为更复杂的模糊匹配算法
len_answer = len(answer)
len_response = len(response)
# answer比response长,肯定不是子串
if len_answer > len_response:
return False
# 简单子序列检查(允许中间有少量不匹配字符)
i = j = 0
mismatch_count = 0
max_mismatch = max(1, len_answer // 4) # 允许25%的字符不匹配
while i < len_answer and j < len_response:
if answer[i] == response[j]:
i += 1
j += 1
else:
j += 1
mismatch_count += 1
if mismatch_count > max_mismatch:
return False
return i == len_answer
# 更强大的模糊匹配版本(使用difflib)
from difflib import SequenceMatcher
def fuzzy_string_match(answer, response, threshold=0.8, case_sensitive=False):
"""
使用difflib的模糊匹配
参数:
threshold: 相似度阈值(0-1)
"""
if not case_sensitive:
answer = answer.lower()
response = response.lower()
# 完全匹配
if answer == response:
return True
# 子串匹配
if answer in response:
return True
# 模糊匹配
similarity = SequenceMatcher(None, answer, response).ratio()
return similarity >= threshold
# 在问答系统中的应用
# qa_pairs = [
# {"answer": "人工智能", "response": "AI(人工智能)是未来趋势"},
# {"answer": "Python", "response": "我们使用python编程"},
# {"answer": "机器学习", "response": "深度学习是机器学习的分支"},
# {"answer": "42", "response": "答案是42"},
# {"answer": "hello", "response": "hi there"}
# ]
# print("\n问答系统匹配结果:")
# for pair in qa_pairs:
# matched = fuzzy_string_match(pair["answer"], pair["response"])
# print(f"Answer: '{pair['answer']}' | Response: '{pair['response']}' → "
# f"{'匹配' if matched else '不匹配'}")