|
import json |
|
import os |
|
from collections import defaultdict |
|
from compare_value import compare_value |
|
from compare_sequence import is_sequence_match_ordered, is_sequence_match_unordered |
|
from compare_str import fuzzy_string_match |
|
from compare_multiple import multiple_choice_checker |
|
|
|
def has_more_digits_than_other_chars(s): |
|
if isinstance(s, (int, float)): |
|
return True |
|
s = s.replace('.', '1') |
|
s = s.replace(',', '1') |
|
s = s.replace('$', '1') |
|
s = s.replace('B', '1') |
|
s = s.replace('T', '1') |
|
s = s.replace('K', '1') |
|
digit_count = 0 |
|
other_count = 0 |
|
for char in s: |
|
if char.isdigit(): |
|
digit_count += 1 |
|
else: |
|
other_count += 1 |
|
|
|
return digit_count > other_count |
|
|
|
|
|
def evaluate_answer(answer, response, qtype): |
|
if qtype in [1, 2, 101, 102]: |
|
if has_more_digits_than_other_chars(answer): |
|
return "Exact Numeric", compare_value(answer, response) |
|
else: |
|
return "Vague String", fuzzy_string_match(answer, response) |
|
elif qtype in [72, 54]: |
|
return "Exact Numeric", compare_value(answer, response) |
|
elif qtype in [10, 50, 51, 52, 110]: |
|
return "Vague Numeric", compare_value(answer, response, eps=0.05) |
|
elif qtype in [13, 103, 113]: |
|
if answer.lower() in response.lower(): |
|
return "Exact String", True |
|
return "Exact String", compare_value(answer, response) |
|
elif qtype in [40, 41, 42, 43, 44]: |
|
response = response.replace("\n", ",") |
|
response = response.replace(" ", "") |
|
answer = answer.replace(" ", "") |
|
return "Vague Unordered Sequence", is_sequence_match_unordered(answer.split(","), response.split(","), fuzzy=True) |
|
elif qtype in [60, 61, 70, 80, 90]: |
|
return "Vague String", fuzzy_string_match(answer, response) |
|
elif qtype in [71]: |
|
response = response.replace("\n\n", "") |
|
response = response.replace("\n", ",") |
|
response = response.replace(" ", "") |
|
response = response.replace("<", ",") |
|
response = response.replace(">", ",") |
|
if response.count(":") == 1: |
|
response = response[response.find(':') + 1:] |
|
answer = answer.replace(" ", "") |
|
return "Vague Ordered Sequence", is_sequence_match_ordered(answer.split(","), response.split(","), fuzzy=True) |
|
elif qtype in [30]: |
|
for an in answer: |
|
if is_sequence_match_ordered(an.split(","), response.split(","), fuzzy=True): |
|
return "Vague Ordered Sequence", True |
|
return "Vague Ordered Sequence", False |
|
elif qtype in [202,1919810,1919811,1919812]: |
|
return "Exact String", multiple_choice_checker(answer , response) |
|
else: |
|
print('there is no qtype',qtype) |
|
return "Exact Numeric", compare_value(answer, response) |
|
|
|
|
|
def process_json_data(json_data): |
|
results = [] |
|
stats = { |
|
'qtype_stats': defaultdict(lambda: {'correct': 0, 'total': 0}), |
|
'figure_stats': defaultdict(lambda: {'correct': 0, 'total': 0}), |
|
'total_correct': 0, |
|
'total_questions': 0 |
|
} |
|
|
|
for key, item in json_data.items(): |
|
question_id = item["question_id"] |
|
if 'qtype' in item: |
|
qtype = item["qtype"] |
|
elif 'qid' in item: |
|
qtype = item["qid"] |
|
else: |
|
qtype = 1 |
|
if "response" not in item or item['response'] == 'Error!': |
|
continue |
|
|
|
answer = str(item["answer"]) |
|
response = str(item["response"]) |
|
response = response.replace(" "," ") |
|
|
|
|
|
figure_path = item["figure_path"] |
|
if type(figure_path) == list: |
|
figure_path = figure_path[0] |
|
|
|
eval_method, score = evaluate_answer(answer, response, qtype) |
|
|
|
results.append({ |
|
"figure_path": figure_path, |
|
"answer": answer, |
|
"response": response, |
|
"question": item["question"] if "question" in item else "", |
|
"question_id": question_id, |
|
"qtype": qtype, |
|
"score": score, |
|
"eval_method": eval_method |
|
}) |
|
|
|
stats['qtype_stats'][qtype]['correct'] += score |
|
stats['qtype_stats'][qtype]['total'] += 1 |
|
|
|
stats['figure_stats'][figure_path]['correct'] += score |
|
stats['figure_stats'][figure_path]['total'] += 1 |
|
|
|
stats['total_correct'] += score |
|
stats['total_questions'] += 1 |
|
|
|
return results, stats |
|
|
|
|
|
def calculate_accuracy(correct, total): |
|
return round(correct / total * 100, 2) if total > 0 else 0.0 |
|
|
|
|
|
def generate_stat_report(stats): |
|
report = {} |
|
|
|
report['overall_accuracy'] = calculate_accuracy( |
|
stats['total_correct'], stats['total_questions']) |
|
|
|
qtype_report = {} |
|
for qtype, counts in stats['qtype_stats'].items(): |
|
qtype_report[f"qtype_{qtype}"] = { |
|
'accuracy': calculate_accuracy(counts['correct'], counts['total']), |
|
'correct': counts['correct'], |
|
'total': counts['total'] |
|
} |
|
report['qtype_accuracy'] = qtype_report |
|
|
|
figure_report = {} |
|
for figure_path, counts in stats['figure_stats'].items(): |
|
figure_report[figure_path] = { |
|
'accuracy': calculate_accuracy(counts['correct'], counts['total']), |
|
'correct': counts['correct'], |
|
'total': counts['total'] |
|
} |
|
report['figure_accuracy'] = figure_report |
|
|
|
return report |
|
|
|
from copy import deepcopy |
|
def evaluate(input_file, output_file=None, stats_file=None): |
|
os.makedirs(os.path.dirname(output_file), exist_ok=True) |
|
with open(input_file, 'r', encoding='utf-8') as f: |
|
data = json.load(f) |
|
if type(data).__name__=='list': |
|
__ = deepcopy(data) |
|
data = {} |
|
for _ in __: |
|
data[_['question_id']] = deepcopy(_) |
|
|
|
|
|
results, stats = process_json_data(data) |
|
report = generate_stat_report(stats) |
|
|
|
if output_file: |
|
with open(output_file, 'w', encoding='utf-8') as f: |
|
json.dump(results, f, indent=2, ensure_ascii=False) |
|
print(f"Score save to {output_file}") |
|
|
|
if stats_file: |
|
with open(stats_file, 'w', encoding='utf-8') as f: |
|
json.dump(report, f, indent=2, ensure_ascii=False) |
|
print(f"Statis saved to {stats_file}") |
|
|
|
print(f"Acc: {report['overall_accuracy']}% {stats['total_questions']}") |
|
|
|
return results, report |
|
|