|
|
|
|
|
|
|
import os |
|
from typing import List |
|
import datasets |
|
|
|
def parse_fasta(fp): |
|
name, seq = None, [] |
|
for line in fp: |
|
line = line.rstrip() |
|
if line.startswith(">"): |
|
if name: |
|
|
|
yield (name[1:], "".join(seq)) |
|
name, seq = line, [] |
|
else: |
|
seq.append(line) |
|
if name: |
|
|
|
yield (name[1:], "".join(seq)) |
|
|
|
|
|
_CITATION = """\ |
|
@article{boshar2024gLMsForProteins, |
|
title={Are Genomic Language Models All You Need? Exploring Genomic Language Models on Protein Downstream Tasks}, |
|
author={Sam Boshar, Evan Trop, Bernardo P. de Almeida, Lviua Copoiu, Thomas Pierrot}, |
|
journal={bioRxiv}, |
|
pages={}, |
|
year={2024}, |
|
publisher={} |
|
} |
|
''' |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
This dataset comprises 5 downstream protein tasks with associated true CDS sequences considered in the paper. The tasks include five which are regression, and one which is multi-label classification. Each task corresponds to a dataset configuration. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/instadeepai/gLMs-for-proteins" |
|
|
|
_LICENSE = "https://github.com/instadeepai/nucleotide-transformer/LICENSE.md" |
|
|
|
_TASKS = ['beta_lactamase_complete', |
|
'beta_lactamase_unique', |
|
'ssp', |
|
'stability', |
|
'melting_point', |
|
'fluorescence' |
|
] |
|
|
|
class ProteinTrueCDSConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for protein True CDS tasks.""" |
|
|
|
def __init__(self, *args, task: str, **kwargs): |
|
"""BuilderConfig downstream tasks dataset. |
|
Args: |
|
task (:obj:`str`): Task name. |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super().__init__( |
|
*args, |
|
name=f"{task}", |
|
**kwargs, |
|
) |
|
self.task = task |
|
|
|
|
|
class ProteinTrueCDSDownstreamTasks(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.1.0") |
|
BUILDER_CONFIG_CLASS = ProteinTrueCDSConfig |
|
BUILDER_CONFIGS = [ |
|
ProteinTrueCDSConfig(task=task) for task in _TASKS |
|
] |
|
|
|
|
|
|
|
def _info(self): |
|
if self.config.task == 'ssp': |
|
label_type = datasets.Sequence(datasets.Value("int32")) |
|
else: |
|
label_type = datasets.Value("float32") |
|
|
|
features = datasets.Features( |
|
{ |
|
"sequence": datasets.Value("string"), |
|
"label": label_type, |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators( |
|
self, dl_manager: datasets.DownloadManager |
|
) -> List[datasets.SplitGenerator]: |
|
|
|
if self.config.task == 'ssp': |
|
train_file = dl_manager.download_and_extract(self.config.task + "/train.fna") |
|
train_dataset = datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"file": train_file} |
|
) |
|
test_datasets = [ |
|
datasets.SplitGenerator( |
|
name=name, gen_kwargs={ |
|
"file": dl_manager.download_and_extract(self.config.task + f"/{name}.fna") |
|
} |
|
) for name in ['CASP12', 'CB513', 'TS115']] |
|
return [train_dataset] + test_datasets |
|
|
|
else: |
|
val_file = dl_manager.download_and_extract(self.config.task + "/val.fna") |
|
train_file = dl_manager.download_and_extract(self.config.task + "/train.fna") |
|
test_file = dl_manager.download_and_extract(self.config.task + "/test.fna") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"file": train_file} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"file": test_file} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, gen_kwargs={"file": val_file} |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, file): |
|
key = 0 |
|
with open(file, "rt") as f: |
|
fasta_sequences = parse_fasta(f) |
|
|
|
for name, seq in fasta_sequences: |
|
|
|
sequence, name = str(seq), str(name) |
|
if self.config.task != 'ssp': |
|
label = float(name.split("|")[-1]) |
|
else: |
|
label = [int(i) for i in name.split("|")[-1]] |
|
|
|
|
|
yield key, { |
|
"sequence": sequence, |
|
"label": label, |
|
} |
|
key += 1 |
|
|