update main loader script for new datasets
Browse files- genomics-long-range-benchmark.py +407 -56
genomics-long-range-benchmark.py
CHANGED
|
@@ -14,14 +14,12 @@ import pandas as pd
|
|
| 14 |
from datasets import DatasetInfo
|
| 15 |
from pyfaidx import Fasta
|
| 16 |
from abc import ABC, abstractmethod
|
| 17 |
-
|
| 18 |
-
from Bio import SeqIO
|
| 19 |
-
import pysam
|
| 20 |
|
| 21 |
"""
|
| 22 |
-
|
| 23 |
Reference Genome URLS:
|
| 24 |
-
|
| 25 |
"""
|
| 26 |
H38_REFERENCE_GENOME_URL = (
|
| 27 |
"https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/" "hg38.fa.gz"
|
|
@@ -31,9 +29,9 @@ H19_REFERENCE_GENOME_URL = (
|
|
| 31 |
)
|
| 32 |
|
| 33 |
"""
|
| 34 |
-
|
| 35 |
Task Specific Handlers:
|
| 36 |
-
|
| 37 |
"""
|
| 38 |
|
| 39 |
class GenomicLRATaskHandler(ABC):
|
|
@@ -97,8 +95,8 @@ class GenomicLRATaskHandler(ABC):
|
|
| 97 |
|
| 98 |
def download_and_extract_gz(self, file_url, cache_dir_root):
|
| 99 |
"""
|
| 100 |
-
Downloads and extracts a gz file into the given cache directory. Returns the
|
| 101 |
-
of the extracted gz file.
|
| 102 |
Args:
|
| 103 |
file_url: url of the gz file to be downloaded and extracted.
|
| 104 |
cache_dir_root: Directory to extract file into.
|
|
@@ -138,29 +136,30 @@ class CagePredictionHandler(GenomicLRATaskHandler):
|
|
| 138 |
50,
|
| 139 |
) # 50 is a subset of CAGE tracks from the original enformer dataset
|
| 140 |
NPZ_SPLIT = 1000 # number of files per npz file.
|
| 141 |
-
NUM_BP_PER_BIN = 128
|
| 142 |
|
| 143 |
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
|
| 144 |
"""
|
| 145 |
Creates a new handler for the CAGE task.
|
| 146 |
Args:
|
| 147 |
-
sequence_length: allows for increasing sequence context. Sequence length
|
| 148 |
-
|
|
|
|
| 149 |
"""
|
| 150 |
self.reference_genome = None
|
| 151 |
self.coordinate_csv_file = None
|
| 152 |
self.target_files_by_split = {}
|
| 153 |
|
|
|
|
| 154 |
assert (sequence_length // 128) % 2 == 0, (
|
| 155 |
-
f"Requested sequence length must be an even multuple of 128 to align
|
|
|
|
| 156 |
)
|
| 157 |
|
| 158 |
self.sequence_length = sequence_length
|
| 159 |
|
| 160 |
if self.sequence_length < self.DEFAULT_LENGTH:
|
| 161 |
-
|
| 162 |
-
self.TARGET_SHAPE = (self.sequence_length//128,50)
|
| 163 |
-
|
| 164 |
|
| 165 |
def get_info(self, description: str) -> DatasetInfo:
|
| 166 |
"""
|
|
@@ -174,7 +173,11 @@ class CagePredictionHandler(GenomicLRATaskHandler):
|
|
| 174 |
# array of sequence length x num_labels
|
| 175 |
"labels": datasets.Array2D(shape=self.TARGET_SHAPE, dtype="float32"),
|
| 176 |
# chromosome number
|
| 177 |
-
"chromosome":datasets.Value(dtype="string")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
}
|
| 179 |
)
|
| 180 |
return datasets.DatasetInfo(
|
|
@@ -192,31 +195,31 @@ class CagePredictionHandler(GenomicLRATaskHandler):
|
|
| 192 |
"""
|
| 193 |
|
| 194 |
# Manually download the reference genome since there are difficulties when
|
| 195 |
-
# streaming
|
| 196 |
reference_genome_file = self.download_and_extract_gz(
|
| 197 |
H38_REFERENCE_GENOME_URL, cache_dir_root
|
| 198 |
)
|
| 199 |
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
|
| 200 |
|
| 201 |
self.coordinate_csv_file = dl_manager.download_and_extract(
|
| 202 |
-
"
|
| 203 |
)
|
| 204 |
|
| 205 |
train_file_dict = {}
|
| 206 |
for train_key, train_file in self.generate_npz_filenames(
|
| 207 |
-
"train", self.NUM_TRAIN, folder="
|
| 208 |
):
|
| 209 |
train_file_dict[train_key] = dl_manager.download(train_file)
|
| 210 |
|
| 211 |
test_file_dict = {}
|
| 212 |
for test_key, test_file in self.generate_npz_filenames(
|
| 213 |
-
"test", self.NUM_TEST, folder="
|
| 214 |
):
|
| 215 |
test_file_dict[test_key] = dl_manager.download(test_file)
|
| 216 |
|
| 217 |
valid_file_dict = {}
|
| 218 |
for valid_key, valid_file in self.generate_npz_filenames(
|
| 219 |
-
"valid", self.NUM_VALID, folder="
|
| 220 |
):
|
| 221 |
valid_file_dict[valid_key] = dl_manager.download(valid_file)
|
| 222 |
|
|
@@ -225,7 +228,6 @@ class CagePredictionHandler(GenomicLRATaskHandler):
|
|
| 225 |
self.target_files_by_split["test"] = test_file_dict
|
| 226 |
self.target_files_by_split["validation"] = valid_file_dict
|
| 227 |
|
| 228 |
-
|
| 229 |
return [
|
| 230 |
datasets.SplitGenerator(
|
| 231 |
name=datasets.Split.TRAIN,
|
|
@@ -241,7 +243,6 @@ class CagePredictionHandler(GenomicLRATaskHandler):
|
|
| 241 |
),
|
| 242 |
]
|
| 243 |
|
| 244 |
-
|
| 245 |
def generate_examples(self, split):
|
| 246 |
"""
|
| 247 |
A generator which produces examples for the given split, each with a sequence
|
|
@@ -257,10 +258,10 @@ class CagePredictionHandler(GenomicLRATaskHandler):
|
|
| 257 |
filtered = coordinates_dataframe[coordinates_dataframe["split"] == split]
|
| 258 |
for sequential_idx, row in filtered.iterrows():
|
| 259 |
start, stop = int(row["start"]) - 1, int(
|
| 260 |
-
row["stop"]) - 1 # -1 since
|
| 261 |
|
| 262 |
chromosome = row['chrom']
|
| 263 |
-
|
| 264 |
padded_sequence = pad_sequence(
|
| 265 |
chromosome=self.reference_genome[chromosome],
|
| 266 |
start=start,
|
|
@@ -277,21 +278,22 @@ class CagePredictionHandler(GenomicLRATaskHandler):
|
|
| 277 |
split == "validation"
|
| 278 |
): # npy files are keyed by ["train", "test", "valid"]
|
| 279 |
split = "valid"
|
| 280 |
-
targets = npz_file[f"target-{split}-{row['npy_idx']}.npy"][
|
| 281 |
-
|
| 282 |
-
|
| 283 |
# subset the targets if sequence length is smaller than 114688 (
|
| 284 |
# DEFAULT_LENGTH)
|
| 285 |
if self.sequence_length < self.DEFAULT_LENGTH:
|
| 286 |
idx_diff = (self.DEFAULT_LENGTH - self.sequence_length) // 2 // 128
|
| 287 |
targets = targets[idx_diff:-idx_diff]
|
| 288 |
|
| 289 |
-
|
| 290 |
if padded_sequence:
|
| 291 |
yield key, {
|
| 292 |
"labels": targets,
|
| 293 |
"sequence": standardize_sequence(padded_sequence),
|
| 294 |
-
"chromosome": re.sub("chr","",chromosome)
|
|
|
|
|
|
|
| 295 |
}
|
| 296 |
key += 1
|
| 297 |
|
|
@@ -325,7 +327,7 @@ class BulkRnaExpressionHandler(GenomicLRATaskHandler):
|
|
| 325 |
Handler for the Bulk RNA Expression task.
|
| 326 |
"""
|
| 327 |
|
| 328 |
-
DEFAULT_LENGTH =
|
| 329 |
|
| 330 |
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
|
| 331 |
"""
|
|
@@ -351,7 +353,9 @@ class BulkRnaExpressionHandler(GenomicLRATaskHandler):
|
|
| 351 |
# list of expression values in each tissue
|
| 352 |
"labels": datasets.Sequence(datasets.Value("float32")),
|
| 353 |
# chromosome number
|
| 354 |
-
"chromosome":datasets.Value(dtype="string")
|
|
|
|
|
|
|
| 355 |
}
|
| 356 |
)
|
| 357 |
return datasets.DatasetInfo(
|
|
@@ -368,7 +372,7 @@ class BulkRnaExpressionHandler(GenomicLRATaskHandler):
|
|
| 368 |
The Bulk RNA Expression dataset requires the reference hg19 genome, coordinate
|
| 369 |
csv file,and label csv file to be saved.
|
| 370 |
"""
|
| 371 |
-
|
| 372 |
reference_genome_file = self.download_and_extract_gz(
|
| 373 |
H19_REFERENCE_GENOME_URL, cache_dir_root
|
| 374 |
)
|
|
@@ -398,7 +402,7 @@ class BulkRnaExpressionHandler(GenomicLRATaskHandler):
|
|
| 398 |
key = 0
|
| 399 |
for idx, coordinates_row in coordinates_split_df.iterrows():
|
| 400 |
start = coordinates_row[
|
| 401 |
-
"CAGE_representative_TSS"] - 1 # -1 since
|
| 402 |
|
| 403 |
chromosome = coordinates_row["chrom"]
|
| 404 |
labels_row = labels_df.loc[idx].values
|
|
@@ -412,21 +416,22 @@ class BulkRnaExpressionHandler(GenomicLRATaskHandler):
|
|
| 412 |
yield key, {
|
| 413 |
"labels": labels_row,
|
| 414 |
"sequence": standardize_sequence(padded_sequence),
|
| 415 |
-
"chromosome":re.sub("chr","",chromosome)
|
|
|
|
| 416 |
}
|
| 417 |
key += 1
|
| 418 |
|
| 419 |
|
| 420 |
-
class
|
| 421 |
"""
|
| 422 |
-
Handler for the Variant Effect
|
| 423 |
"""
|
| 424 |
|
| 425 |
-
DEFAULT_LENGTH =
|
| 426 |
|
| 427 |
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
|
| 428 |
"""
|
| 429 |
-
Creates a new handler for the Variant Effect
|
| 430 |
Args:
|
| 431 |
sequence_length: Length of the sequence to pad around the SNP position
|
| 432 |
|
|
@@ -436,9 +441,9 @@ class VariantEffectPredictionHandler(GenomicLRATaskHandler):
|
|
| 436 |
|
| 437 |
def get_info(self, description: str) -> DatasetInfo:
|
| 438 |
"""
|
| 439 |
-
Returns the DatasetInfo for the Variant Effect
|
| 440 |
-
includes a genomic sequence with the reference allele as well as the genomic
|
| 441 |
-
and a binary label.
|
| 442 |
"""
|
| 443 |
features = datasets.Features(
|
| 444 |
{
|
|
@@ -451,8 +456,10 @@ class VariantEffectPredictionHandler(GenomicLRATaskHandler):
|
|
| 451 |
"tissue": datasets.Value(dtype="string"),
|
| 452 |
# chromosome number
|
| 453 |
"chromosome": datasets.Value(dtype="string"),
|
|
|
|
|
|
|
| 454 |
# distance to nearest tss
|
| 455 |
-
"distance_to_nearest_tss":datasets.Value(dtype="int32")
|
| 456 |
}
|
| 457 |
)
|
| 458 |
|
|
@@ -478,7 +485,7 @@ class VariantEffectPredictionHandler(GenomicLRATaskHandler):
|
|
| 478 |
|
| 479 |
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
|
| 480 |
self.coordinates_labels_csv_file = dl_manager.download_and_extract(
|
| 481 |
-
f"
|
| 482 |
)
|
| 483 |
|
| 484 |
return super().split_generators(dl_manager, cache_dir_root)
|
|
@@ -496,7 +503,7 @@ class VariantEffectPredictionHandler(GenomicLRATaskHandler):
|
|
| 496 |
|
| 497 |
key = 0
|
| 498 |
for idx, row in coordinates_split_df.iterrows():
|
| 499 |
-
start = row["POS"] - 1 # sub 1 to create idx since
|
| 500 |
alt_allele = row["ALT"]
|
| 501 |
label = row["label"]
|
| 502 |
tissue = row['tissue']
|
|
@@ -513,8 +520,8 @@ class VariantEffectPredictionHandler(GenomicLRATaskHandler):
|
|
| 513 |
|
| 514 |
# only if a valid sequence returned
|
| 515 |
if ref_forward:
|
| 516 |
-
# Mutate sequence with the alt allele at the SNP position,
|
| 517 |
-
# centered in the string returned from pad_sequence
|
| 518 |
alt_forward = list(ref_forward)
|
| 519 |
alt_forward[self.sequence_length // 2] = alt_allele
|
| 520 |
alt_forward = "".join(alt_forward)
|
|
@@ -525,14 +532,351 @@ class VariantEffectPredictionHandler(GenomicLRATaskHandler):
|
|
| 525 |
"chromosome": re.sub("chr", "", chromosome),
|
| 526 |
"ref_forward_sequence": standardize_sequence(ref_forward),
|
| 527 |
"alt_forward_sequence": standardize_sequence(alt_forward),
|
| 528 |
-
"distance_to_nearest_tss": distance
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 529 |
}
|
| 530 |
key += 1
|
| 531 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 532 |
"""
|
| 533 |
-
|
| 534 |
Dataset loader:
|
| 535 |
-
|
| 536 |
"""
|
| 537 |
|
| 538 |
_DESCRIPTION = """
|
|
@@ -542,7 +886,13 @@ Dataset for benchmark of genomic deep learning models.
|
|
| 542 |
_TASK_HANDLERS = {
|
| 543 |
"cage_prediction": CagePredictionHandler,
|
| 544 |
"bulk_rna_expression": BulkRnaExpressionHandler,
|
| 545 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 546 |
}
|
| 547 |
|
| 548 |
|
|
@@ -558,7 +908,7 @@ class GenomicsLRAConfig(datasets.BuilderConfig):
|
|
| 558 |
**kwargs: keyword arguments forwarded to super.
|
| 559 |
"""
|
| 560 |
super().__init__()
|
| 561 |
-
self.handler = _TASK_HANDLERS[task_name](task_name=task_name
|
| 562 |
|
| 563 |
|
| 564 |
# DatasetBuilder
|
|
@@ -592,9 +942,9 @@ class GenomicsLRATasks(datasets.GeneratorBasedBuilder):
|
|
| 592 |
|
| 593 |
|
| 594 |
"""
|
| 595 |
-
|
| 596 |
Global Utils:
|
| 597 |
-
|
| 598 |
"""
|
| 599 |
|
| 600 |
|
|
@@ -625,7 +975,8 @@ def pad_sequence(chromosome, start, sequence_length, end=None, negative_strand=F
|
|
| 625 |
remainder is added to the end of the sequence.
|
| 626 |
end: End index of original sequence. If no end is specified, it creates a
|
| 627 |
centered sequence around the start index.
|
| 628 |
-
negative_strand: If negative_strand, returns the reverse compliment of the
|
|
|
|
| 629 |
"""
|
| 630 |
if end:
|
| 631 |
pad = (sequence_length - (end - start)) // 2
|
|
|
|
| 14 |
from datasets import DatasetInfo
|
| 15 |
from pyfaidx import Fasta
|
| 16 |
from abc import ABC, abstractmethod
|
| 17 |
+
|
|
|
|
|
|
|
| 18 |
|
| 19 |
"""
|
| 20 |
+
----------------------------------------------------------------------------------------
|
| 21 |
Reference Genome URLS:
|
| 22 |
+
----------------------------------------------------------------------------------------
|
| 23 |
"""
|
| 24 |
H38_REFERENCE_GENOME_URL = (
|
| 25 |
"https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/" "hg38.fa.gz"
|
|
|
|
| 29 |
)
|
| 30 |
|
| 31 |
"""
|
| 32 |
+
----------------------------------------------------------------------------------------
|
| 33 |
Task Specific Handlers:
|
| 34 |
+
----------------------------------------------------------------------------------------
|
| 35 |
"""
|
| 36 |
|
| 37 |
class GenomicLRATaskHandler(ABC):
|
|
|
|
| 95 |
|
| 96 |
def download_and_extract_gz(self, file_url, cache_dir_root):
|
| 97 |
"""
|
| 98 |
+
Downloads and extracts a gz file into the given cache directory. Returns the
|
| 99 |
+
full file path of the extracted gz file.
|
| 100 |
Args:
|
| 101 |
file_url: url of the gz file to be downloaded and extracted.
|
| 102 |
cache_dir_root: Directory to extract file into.
|
|
|
|
| 136 |
50,
|
| 137 |
) # 50 is a subset of CAGE tracks from the original enformer dataset
|
| 138 |
NPZ_SPLIT = 1000 # number of files per npz file.
|
| 139 |
+
NUM_BP_PER_BIN = 128 # number of base pairs per bin in labels
|
| 140 |
|
| 141 |
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
|
| 142 |
"""
|
| 143 |
Creates a new handler for the CAGE task.
|
| 144 |
Args:
|
| 145 |
+
sequence_length: allows for increasing sequence context. Sequence length
|
| 146 |
+
must be an even multiple of 128 to align with binned labels. Note:
|
| 147 |
+
increasing sequence length may decrease the number of usable samples.
|
| 148 |
"""
|
| 149 |
self.reference_genome = None
|
| 150 |
self.coordinate_csv_file = None
|
| 151 |
self.target_files_by_split = {}
|
| 152 |
|
| 153 |
+
|
| 154 |
assert (sequence_length // 128) % 2 == 0, (
|
| 155 |
+
f"Requested sequence length must be an even multuple of 128 to align "
|
| 156 |
+
f"with the binned labels."
|
| 157 |
)
|
| 158 |
|
| 159 |
self.sequence_length = sequence_length
|
| 160 |
|
| 161 |
if self.sequence_length < self.DEFAULT_LENGTH:
|
| 162 |
+
self.TARGET_SHAPE = (self.sequence_length // 128, 50)
|
|
|
|
|
|
|
| 163 |
|
| 164 |
def get_info(self, description: str) -> DatasetInfo:
|
| 165 |
"""
|
|
|
|
| 173 |
# array of sequence length x num_labels
|
| 174 |
"labels": datasets.Array2D(shape=self.TARGET_SHAPE, dtype="float32"),
|
| 175 |
# chromosome number
|
| 176 |
+
"chromosome": datasets.Value(dtype="string"),
|
| 177 |
+
# start
|
| 178 |
+
"start": datasets.Value(dtype="int32"),
|
| 179 |
+
# stop
|
| 180 |
+
"stop": datasets.Value(dtype="int32")
|
| 181 |
}
|
| 182 |
)
|
| 183 |
return datasets.DatasetInfo(
|
|
|
|
| 195 |
"""
|
| 196 |
|
| 197 |
# Manually download the reference genome since there are difficulties when
|
| 198 |
+
# streaming
|
| 199 |
reference_genome_file = self.download_and_extract_gz(
|
| 200 |
H38_REFERENCE_GENOME_URL, cache_dir_root
|
| 201 |
)
|
| 202 |
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
|
| 203 |
|
| 204 |
self.coordinate_csv_file = dl_manager.download_and_extract(
|
| 205 |
+
"cage_expression/sequences_coordinates.csv"
|
| 206 |
)
|
| 207 |
|
| 208 |
train_file_dict = {}
|
| 209 |
for train_key, train_file in self.generate_npz_filenames(
|
| 210 |
+
"train", self.NUM_TRAIN, folder="cage_expression/targets_subset"
|
| 211 |
):
|
| 212 |
train_file_dict[train_key] = dl_manager.download(train_file)
|
| 213 |
|
| 214 |
test_file_dict = {}
|
| 215 |
for test_key, test_file in self.generate_npz_filenames(
|
| 216 |
+
"test", self.NUM_TEST, folder="cage_expression/targets_subset"
|
| 217 |
):
|
| 218 |
test_file_dict[test_key] = dl_manager.download(test_file)
|
| 219 |
|
| 220 |
valid_file_dict = {}
|
| 221 |
for valid_key, valid_file in self.generate_npz_filenames(
|
| 222 |
+
"valid", self.NUM_VALID, folder="cage_expression/targets_subset"
|
| 223 |
):
|
| 224 |
valid_file_dict[valid_key] = dl_manager.download(valid_file)
|
| 225 |
|
|
|
|
| 228 |
self.target_files_by_split["test"] = test_file_dict
|
| 229 |
self.target_files_by_split["validation"] = valid_file_dict
|
| 230 |
|
|
|
|
| 231 |
return [
|
| 232 |
datasets.SplitGenerator(
|
| 233 |
name=datasets.Split.TRAIN,
|
|
|
|
| 243 |
),
|
| 244 |
]
|
| 245 |
|
|
|
|
| 246 |
def generate_examples(self, split):
|
| 247 |
"""
|
| 248 |
A generator which produces examples for the given split, each with a sequence
|
|
|
|
| 258 |
filtered = coordinates_dataframe[coordinates_dataframe["split"] == split]
|
| 259 |
for sequential_idx, row in filtered.iterrows():
|
| 260 |
start, stop = int(row["start"]) - 1, int(
|
| 261 |
+
row["stop"]) - 1 # -1 since coords are 1-based
|
| 262 |
|
| 263 |
chromosome = row['chrom']
|
| 264 |
+
|
| 265 |
padded_sequence = pad_sequence(
|
| 266 |
chromosome=self.reference_genome[chromosome],
|
| 267 |
start=start,
|
|
|
|
| 278 |
split == "validation"
|
| 279 |
): # npy files are keyed by ["train", "test", "valid"]
|
| 280 |
split = "valid"
|
| 281 |
+
targets = npz_file[f"target-{split}-{row['npy_idx']}.npy"][
|
| 282 |
+
0] # select 0 since there is extra dimension
|
| 283 |
+
|
| 284 |
# subset the targets if sequence length is smaller than 114688 (
|
| 285 |
# DEFAULT_LENGTH)
|
| 286 |
if self.sequence_length < self.DEFAULT_LENGTH:
|
| 287 |
idx_diff = (self.DEFAULT_LENGTH - self.sequence_length) // 2 // 128
|
| 288 |
targets = targets[idx_diff:-idx_diff]
|
| 289 |
|
|
|
|
| 290 |
if padded_sequence:
|
| 291 |
yield key, {
|
| 292 |
"labels": targets,
|
| 293 |
"sequence": standardize_sequence(padded_sequence),
|
| 294 |
+
"chromosome": re.sub("chr", "", chromosome),
|
| 295 |
+
"start": int(row["start"]),
|
| 296 |
+
"stop": int(row["stop"])
|
| 297 |
}
|
| 298 |
key += 1
|
| 299 |
|
|
|
|
| 327 |
Handler for the Bulk RNA Expression task.
|
| 328 |
"""
|
| 329 |
|
| 330 |
+
DEFAULT_LENGTH = 100000
|
| 331 |
|
| 332 |
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
|
| 333 |
"""
|
|
|
|
| 353 |
# list of expression values in each tissue
|
| 354 |
"labels": datasets.Sequence(datasets.Value("float32")),
|
| 355 |
# chromosome number
|
| 356 |
+
"chromosome": datasets.Value(dtype="string"),
|
| 357 |
+
# position
|
| 358 |
+
"position": datasets.Value(dtype="int32"),
|
| 359 |
}
|
| 360 |
)
|
| 361 |
return datasets.DatasetInfo(
|
|
|
|
| 372 |
The Bulk RNA Expression dataset requires the reference hg19 genome, coordinate
|
| 373 |
csv file,and label csv file to be saved.
|
| 374 |
"""
|
| 375 |
+
|
| 376 |
reference_genome_file = self.download_and_extract_gz(
|
| 377 |
H19_REFERENCE_GENOME_URL, cache_dir_root
|
| 378 |
)
|
|
|
|
| 402 |
key = 0
|
| 403 |
for idx, coordinates_row in coordinates_split_df.iterrows():
|
| 404 |
start = coordinates_row[
|
| 405 |
+
"CAGE_representative_TSS"] - 1 # -1 since coords are 1-based
|
| 406 |
|
| 407 |
chromosome = coordinates_row["chrom"]
|
| 408 |
labels_row = labels_df.loc[idx].values
|
|
|
|
| 416 |
yield key, {
|
| 417 |
"labels": labels_row,
|
| 418 |
"sequence": standardize_sequence(padded_sequence),
|
| 419 |
+
"chromosome": re.sub("chr", "", chromosome),
|
| 420 |
+
"position": coordinates_row["CAGE_representative_TSS"]
|
| 421 |
}
|
| 422 |
key += 1
|
| 423 |
|
| 424 |
|
| 425 |
+
class VariantEffectCausalEqtl(GenomicLRATaskHandler):
|
| 426 |
"""
|
| 427 |
+
Handler for the Variant Effect Causal eQTL task.
|
| 428 |
"""
|
| 429 |
|
| 430 |
+
DEFAULT_LENGTH = 100000
|
| 431 |
|
| 432 |
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
|
| 433 |
"""
|
| 434 |
+
Creates a new handler for the Variant Effect Causal eQTL Task.
|
| 435 |
Args:
|
| 436 |
sequence_length: Length of the sequence to pad around the SNP position
|
| 437 |
|
|
|
|
| 441 |
|
| 442 |
def get_info(self, description: str) -> DatasetInfo:
|
| 443 |
"""
|
| 444 |
+
Returns the DatasetInfo for the Variant Effect Causal eQTL dataset. Each example
|
| 445 |
+
includes a genomic sequence with the reference allele as well as the genomic
|
| 446 |
+
sequence with the alternative allele, and a binary label.
|
| 447 |
"""
|
| 448 |
features = datasets.Features(
|
| 449 |
{
|
|
|
|
| 456 |
"tissue": datasets.Value(dtype="string"),
|
| 457 |
# chromosome number
|
| 458 |
"chromosome": datasets.Value(dtype="string"),
|
| 459 |
+
# variant position
|
| 460 |
+
"position": datasets.Value(dtype="int32"),
|
| 461 |
# distance to nearest tss
|
| 462 |
+
"distance_to_nearest_tss": datasets.Value(dtype="int32")
|
| 463 |
}
|
| 464 |
)
|
| 465 |
|
|
|
|
| 485 |
|
| 486 |
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
|
| 487 |
self.coordinates_labels_csv_file = dl_manager.download_and_extract(
|
| 488 |
+
f"variant_effect_prediction/All_Tissues.csv"
|
| 489 |
)
|
| 490 |
|
| 491 |
return super().split_generators(dl_manager, cache_dir_root)
|
|
|
|
| 503 |
|
| 504 |
key = 0
|
| 505 |
for idx, row in coordinates_split_df.iterrows():
|
| 506 |
+
start = row["POS"] - 1 # sub 1 to create idx since coords are 1-based
|
| 507 |
alt_allele = row["ALT"]
|
| 508 |
label = row["label"]
|
| 509 |
tissue = row['tissue']
|
|
|
|
| 520 |
|
| 521 |
# only if a valid sequence returned
|
| 522 |
if ref_forward:
|
| 523 |
+
# Mutate sequence with the alt allele at the SNP position,
|
| 524 |
+
# which is always centered in the string returned from pad_sequence
|
| 525 |
alt_forward = list(ref_forward)
|
| 526 |
alt_forward[self.sequence_length // 2] = alt_allele
|
| 527 |
alt_forward = "".join(alt_forward)
|
|
|
|
| 532 |
"chromosome": re.sub("chr", "", chromosome),
|
| 533 |
"ref_forward_sequence": standardize_sequence(ref_forward),
|
| 534 |
"alt_forward_sequence": standardize_sequence(alt_forward),
|
| 535 |
+
"distance_to_nearest_tss": distance,
|
| 536 |
+
"position": row["POS"]
|
| 537 |
+
}
|
| 538 |
+
key += 1
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
class VariantEffectPathogenicHandler(GenomicLRATaskHandler):
|
| 542 |
+
"""
|
| 543 |
+
Handler for the Variant Effect Pathogenic Prediction tasks.
|
| 544 |
+
"""
|
| 545 |
+
|
| 546 |
+
DEFAULT_LENGTH = 100000
|
| 547 |
+
|
| 548 |
+
def __init__(self, sequence_length=DEFAULT_LENGTH, task_name=None, subset=False,
|
| 549 |
+
**kwargs):
|
| 550 |
+
"""
|
| 551 |
+
Creates a new handler for the Variant Effect Pathogenic Tasks.
|
| 552 |
+
Args:
|
| 553 |
+
sequence_length: Length of the sequence to pad around the SNP position
|
| 554 |
+
subset: Whether to return a pre-determined subset of the data.
|
| 555 |
+
|
| 556 |
+
"""
|
| 557 |
+
self.sequence_length = sequence_length
|
| 558 |
+
|
| 559 |
+
if task_name == 'variant_effect_pathogenic_coding':
|
| 560 |
+
self.data_file_name = "variant_effect_pathogenic/vep_pathogenic_coding.csv"
|
| 561 |
+
elif task_name == 'variant_effect_pathogenic_non_coding':
|
| 562 |
+
self.data_file_name = "variant_effect_pathogenic/" \
|
| 563 |
+
"vep_pathogenic_non_coding_subset.csv" \
|
| 564 |
+
if subset else "variant_effect_pathogenic/vep_pathogenic_non_coding.csv"
|
| 565 |
+
|
| 566 |
+
def get_info(self, description: str) -> DatasetInfo:
|
| 567 |
+
"""
|
| 568 |
+
Returns the DatasetInfo for the Variant Effect Pathogenic datasets. Each example
|
| 569 |
+
includes a genomic sequence with the reference allele as well as the genomic
|
| 570 |
+
sequence with the alternative allele, and a binary label.
|
| 571 |
+
"""
|
| 572 |
+
features = datasets.Features(
|
| 573 |
+
{
|
| 574 |
+
# DNA sequence
|
| 575 |
+
"ref_forward_sequence": datasets.Value("string"),
|
| 576 |
+
"alt_forward_sequence": datasets.Value("string"),
|
| 577 |
+
# binary label
|
| 578 |
+
"label": datasets.Value(dtype="int8"),
|
| 579 |
+
# chromosome number
|
| 580 |
+
"chromosome": datasets.Value(dtype="string"),
|
| 581 |
+
# position
|
| 582 |
+
"position": datasets.Value(dtype="int32")
|
| 583 |
+
}
|
| 584 |
+
)
|
| 585 |
+
|
| 586 |
+
return datasets.DatasetInfo(
|
| 587 |
+
# This is the description that will appear on the datasets page.
|
| 588 |
+
description=description,
|
| 589 |
+
# This defines the different columns of the dataset and their types
|
| 590 |
+
features=features,
|
| 591 |
+
)
|
| 592 |
+
|
| 593 |
+
def split_generators(self, dl_manager, cache_dir_root):
|
| 594 |
+
"""
|
| 595 |
+
Separates files by split and stores filenames in instance variables.
|
| 596 |
+
The variant effect prediction datasets require the reference hg38 genome and
|
| 597 |
+
coordinates_labels_csv_file to be saved.
|
| 598 |
+
"""
|
| 599 |
+
|
| 600 |
+
reference_genome_file = self.download_and_extract_gz(
|
| 601 |
+
H38_REFERENCE_GENOME_URL, cache_dir_root
|
| 602 |
+
)
|
| 603 |
+
|
| 604 |
+
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
|
| 605 |
+
self.coordinates_labels_csv_file = dl_manager.download_and_extract(
|
| 606 |
+
self.data_file_name)
|
| 607 |
+
|
| 608 |
+
if 'non_coding' in self.data_file_name:
|
| 609 |
+
return [
|
| 610 |
+
datasets.SplitGenerator(
|
| 611 |
+
name=datasets.Split.TEST,
|
| 612 |
+
gen_kwargs={"handler": self, "split": "test"}
|
| 613 |
+
), ]
|
| 614 |
+
else:
|
| 615 |
+
return super().split_generators(dl_manager, cache_dir_root)
|
| 616 |
+
|
| 617 |
+
def generate_examples(self, split):
|
| 618 |
+
"""
|
| 619 |
+
A generator which produces examples each with ref/alt allele
|
| 620 |
+
and corresponding binary label. The sequences are extended to
|
| 621 |
+
the desired sequence length and standardized before returning.
|
| 622 |
+
"""
|
| 623 |
+
|
| 624 |
+
coordinates_df = pd.read_csv(self.coordinates_labels_csv_file)
|
| 625 |
+
coordinates_split_df = coordinates_df[coordinates_df["split"] == split]
|
| 626 |
+
|
| 627 |
+
key = 0
|
| 628 |
+
for idx, row in coordinates_split_df.iterrows():
|
| 629 |
+
start = row["POS"] - 1 # sub 1 to create idx since coords are 1-based
|
| 630 |
+
alt_allele = row["ALT"]
|
| 631 |
+
label = row["INT_LABEL"]
|
| 632 |
+
chromosome = row["CHROM"]
|
| 633 |
+
|
| 634 |
+
# get reference forward sequence
|
| 635 |
+
ref_forward = pad_sequence(
|
| 636 |
+
chromosome=self.reference_genome[chromosome],
|
| 637 |
+
start=start,
|
| 638 |
+
sequence_length=self.sequence_length,
|
| 639 |
+
negative_strand=False,
|
| 640 |
+
)
|
| 641 |
+
|
| 642 |
+
# only if a valid sequence returned
|
| 643 |
+
if ref_forward:
|
| 644 |
+
# Mutate sequence with the alt allele at the SNP position,
|
| 645 |
+
# which is always centered in the string returned from pad_sequence
|
| 646 |
+
alt_forward = list(ref_forward)
|
| 647 |
+
alt_forward[self.sequence_length // 2] = alt_allele
|
| 648 |
+
alt_forward = "".join(alt_forward)
|
| 649 |
+
|
| 650 |
+
yield key, {
|
| 651 |
+
"label": label,
|
| 652 |
+
"chromosome": re.sub("chr", "", chromosome),
|
| 653 |
+
"ref_forward_sequence": standardize_sequence(ref_forward),
|
| 654 |
+
"alt_forward_sequence": standardize_sequence(alt_forward),
|
| 655 |
+
"position": row['POS']
|
| 656 |
}
|
| 657 |
key += 1
|
| 658 |
|
| 659 |
+
|
| 660 |
+
class ChromatinFeaturesHandler(GenomicLRATaskHandler):
|
| 661 |
+
"""
|
| 662 |
+
Handler for the histone marks and DNA accessibility tasks also referred to
|
| 663 |
+
collectively as Chromatin features.
|
| 664 |
+
"""
|
| 665 |
+
|
| 666 |
+
DEFAULT_LENGTH = 100000
|
| 667 |
+
|
| 668 |
+
def __init__(self, task_name=None, sequence_length=DEFAULT_LENGTH, subset=False,
|
| 669 |
+
**kwargs):
|
| 670 |
+
"""
|
| 671 |
+
Creates a new handler for the Deep Sea Histone and DNase tasks.
|
| 672 |
+
Args:
|
| 673 |
+
sequence_length: Length of the sequence around and including the
|
| 674 |
+
annotated 200bp bin
|
| 675 |
+
subset: Whether to return a pre-determined subset of the entire dataset.
|
| 676 |
+
|
| 677 |
+
"""
|
| 678 |
+
self.sequence_length = sequence_length
|
| 679 |
+
|
| 680 |
+
if sequence_length < 200:
|
| 681 |
+
raise ValueError(
|
| 682 |
+
'Sequence length for this task must be greater or equal to 200 bp')
|
| 683 |
+
|
| 684 |
+
if 'histone' in task_name:
|
| 685 |
+
self.label_name = 'HISTONES'
|
| 686 |
+
elif 'dnase' in task_name:
|
| 687 |
+
self.label_name = 'DNASE'
|
| 688 |
+
|
| 689 |
+
self.data_file_name = "chromatin_features/histones_and_dnase_subset.csv" if \
|
| 690 |
+
subset else "chromatin_features/histones_and_dnase.csv"
|
| 691 |
+
|
| 692 |
+
def get_info(self, description: str) -> DatasetInfo:
|
| 693 |
+
"""
|
| 694 |
+
Returns the DatasetInfo for the histone marks and dna accessibility datasets.
|
| 695 |
+
Each example includes a genomic sequence and a list of label values.
|
| 696 |
+
"""
|
| 697 |
+
features = datasets.Features(
|
| 698 |
+
{
|
| 699 |
+
# DNA sequence
|
| 700 |
+
"sequence": datasets.Value("string"),
|
| 701 |
+
# list of binary chromatin marks
|
| 702 |
+
"labels": datasets.Sequence(datasets.Value("int8")),
|
| 703 |
+
# chromosome number
|
| 704 |
+
"chromosome": datasets.Value(dtype="string"),
|
| 705 |
+
# position
|
| 706 |
+
"position": datasets.Value(dtype="int32"),
|
| 707 |
+
}
|
| 708 |
+
)
|
| 709 |
+
return datasets.DatasetInfo(
|
| 710 |
+
# This is the description that will appear on the datasets page.
|
| 711 |
+
description=description,
|
| 712 |
+
# This defines the different columns of the dataset and their types
|
| 713 |
+
features=features,
|
| 714 |
+
|
| 715 |
+
)
|
| 716 |
+
|
| 717 |
+
def split_generators(self, dl_manager, cache_dir_root):
|
| 718 |
+
"""
|
| 719 |
+
Separates files by split and stores filenames in instance variables.
|
| 720 |
+
The histone marks and dna accessibility datasets require the reference hg19
|
| 721 |
+
genome and coordinate csv file to be saved.
|
| 722 |
+
"""
|
| 723 |
+
reference_genome_file = self.download_and_extract_gz(
|
| 724 |
+
H19_REFERENCE_GENOME_URL, cache_dir_root
|
| 725 |
+
)
|
| 726 |
+
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
|
| 727 |
+
|
| 728 |
+
self.coordinate_csv_file = dl_manager.download_and_extract(self.data_file_name)
|
| 729 |
+
|
| 730 |
+
return super().split_generators(dl_manager, cache_dir_root)
|
| 731 |
+
|
| 732 |
+
def generate_examples(self, split):
|
| 733 |
+
"""
|
| 734 |
+
A generator which produces examples for the given split, each with a sequence
|
| 735 |
+
and the corresponding labels. The sequences are padded to the correct sequence
|
| 736 |
+
length and standardized before returning.
|
| 737 |
+
"""
|
| 738 |
+
coordinates_df = pd.read_csv(self.coordinate_csv_file)
|
| 739 |
+
coordinates_split_df = coordinates_df[coordinates_df["split"] == split]
|
| 740 |
+
|
| 741 |
+
key = 0
|
| 742 |
+
for idx, coordinates_row in coordinates_split_df.iterrows():
|
| 743 |
+
start = coordinates_row['POS'] - 1 # -1 since saved coords are 1-based
|
| 744 |
+
chromosome = coordinates_row["CHROM"]
|
| 745 |
+
|
| 746 |
+
# literal eval used since lists are saved as strings in csv
|
| 747 |
+
labels_row = literal_eval(coordinates_row[self.label_name])
|
| 748 |
+
|
| 749 |
+
padded_sequence = pad_sequence(
|
| 750 |
+
chromosome=self.reference_genome[chromosome],
|
| 751 |
+
start=start,
|
| 752 |
+
sequence_length=self.sequence_length,
|
| 753 |
+
)
|
| 754 |
+
if padded_sequence:
|
| 755 |
+
yield key, {
|
| 756 |
+
"labels": labels_row,
|
| 757 |
+
"sequence": standardize_sequence(padded_sequence),
|
| 758 |
+
"chromosome": re.sub("chr", "", chromosome),
|
| 759 |
+
"position": coordinates_row['POS']
|
| 760 |
+
}
|
| 761 |
+
key += 1
|
| 762 |
+
|
| 763 |
+
|
| 764 |
+
class RegulatoryElementHandler(GenomicLRATaskHandler):
|
| 765 |
+
"""
|
| 766 |
+
Handler for the Regulatory Element Prediction tasks.
|
| 767 |
+
"""
|
| 768 |
+
DEFAULT_LENGTH = 100000
|
| 769 |
+
|
| 770 |
+
def __init__(self, task_name=None, sequence_length=DEFAULT_LENGTH, subset=False,
|
| 771 |
+
**kwargs):
|
| 772 |
+
"""
|
| 773 |
+
Creates a new handler for the Regulatory Element Prediction tasks.
|
| 774 |
+
Args:
|
| 775 |
+
sequence_length: Length of the sequence around the element/non-element
|
| 776 |
+
subset: Whether to return a pre-determined subset of the entire dataset.
|
| 777 |
+
|
| 778 |
+
"""
|
| 779 |
+
|
| 780 |
+
if sequence_length < 200:
|
| 781 |
+
raise ValueError(
|
| 782 |
+
'Sequence length for this task must be greater or equal to 200 bp')
|
| 783 |
+
|
| 784 |
+
self.sequence_length = sequence_length
|
| 785 |
+
|
| 786 |
+
if 'promoter' in task_name:
|
| 787 |
+
self.data_file_name = 'regulatory_elements/promoter_dataset'
|
| 788 |
+
|
| 789 |
+
elif 'enhancer' in task_name:
|
| 790 |
+
self.data_file_name = 'regulatory_elements/enhancer_dataset'
|
| 791 |
+
|
| 792 |
+
if subset:
|
| 793 |
+
self.data_file_name += '_subset.csv'
|
| 794 |
+
else:
|
| 795 |
+
self.data_file_name += '.csv'
|
| 796 |
+
|
| 797 |
+
def get_info(self, description: str) -> DatasetInfo:
|
| 798 |
+
"""
|
| 799 |
+
Returns the DatasetInfo for the Regulatory Element Prediction Tasks.
|
| 800 |
+
Each example includes a genomic sequence and a label.
|
| 801 |
+
"""
|
| 802 |
+
features = datasets.Features(
|
| 803 |
+
{
|
| 804 |
+
# DNA sequence
|
| 805 |
+
"sequence": datasets.Value("string"),
|
| 806 |
+
# label corresponding to whether the sequence has
|
| 807 |
+
# the regulatory element of interest or not
|
| 808 |
+
"labels": datasets.Value("int8"),
|
| 809 |
+
# chromosome number
|
| 810 |
+
"chromosome": datasets.Value(dtype="string"),
|
| 811 |
+
# start
|
| 812 |
+
"start": datasets.Value(dtype="int32"),
|
| 813 |
+
# stop
|
| 814 |
+
"stop": datasets.Value(dtype="int32"),
|
| 815 |
+
}
|
| 816 |
+
)
|
| 817 |
+
return datasets.DatasetInfo(
|
| 818 |
+
# This is the description that will appear on the datasets page.
|
| 819 |
+
description=description,
|
| 820 |
+
# This defines the different columns of the dataset and their types
|
| 821 |
+
features=features,
|
| 822 |
+
|
| 823 |
+
)
|
| 824 |
+
|
| 825 |
+
def split_generators(self, dl_manager, cache_dir_root):
|
| 826 |
+
"""
|
| 827 |
+
Separates files by split and stores filenames in instance variables.
|
| 828 |
+
"""
|
| 829 |
+
reference_genome_file = self.download_and_extract_gz(
|
| 830 |
+
H38_REFERENCE_GENOME_URL, cache_dir_root
|
| 831 |
+
)
|
| 832 |
+
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
|
| 833 |
+
|
| 834 |
+
self.coordinate_csv_file = dl_manager.download_and_extract(
|
| 835 |
+
self.data_file_name
|
| 836 |
+
)
|
| 837 |
+
|
| 838 |
+
return super().split_generators(dl_manager, cache_dir_root)
|
| 839 |
+
|
| 840 |
+
def generate_examples(self, split):
|
| 841 |
+
"""
|
| 842 |
+
A generator which produces examples for the given split, each with a sequence
|
| 843 |
+
and the corresponding label. The sequences are padded to the correct sequence
|
| 844 |
+
length and standardized before returning.
|
| 845 |
+
"""
|
| 846 |
+
coordinates_df = pd.read_csv(self.coordinate_csv_file)
|
| 847 |
+
|
| 848 |
+
coordinates_split_df = coordinates_df[coordinates_df["split"] == split]
|
| 849 |
+
|
| 850 |
+
key = 0
|
| 851 |
+
for _, coordinates_row in coordinates_split_df.iterrows():
|
| 852 |
+
start = coordinates_row["START"] - 1 # -1 since vcf coords are 1-based
|
| 853 |
+
end = coordinates_row["STOP"] - 1 # -1 since vcf coords are 1-based
|
| 854 |
+
chromosome = coordinates_row["CHROM"]
|
| 855 |
+
|
| 856 |
+
label = coordinates_row['label']
|
| 857 |
+
|
| 858 |
+
padded_sequence = pad_sequence(
|
| 859 |
+
chromosome=self.reference_genome[chromosome],
|
| 860 |
+
start=start,
|
| 861 |
+
end=end,
|
| 862 |
+
sequence_length=self.sequence_length,
|
| 863 |
+
)
|
| 864 |
+
|
| 865 |
+
if padded_sequence:
|
| 866 |
+
yield key, {
|
| 867 |
+
"labels": label,
|
| 868 |
+
"sequence": standardize_sequence(padded_sequence),
|
| 869 |
+
"chromosome": re.sub("chr", "", chromosome),
|
| 870 |
+
"start": coordinates_row["START"],
|
| 871 |
+
"stop": coordinates_row["STOP"]
|
| 872 |
+
}
|
| 873 |
+
key += 1
|
| 874 |
+
|
| 875 |
+
|
| 876 |
"""
|
| 877 |
+
----------------------------------------------------------------------------------------
|
| 878 |
Dataset loader:
|
| 879 |
+
----------------------------------------------------------------------------------------
|
| 880 |
"""
|
| 881 |
|
| 882 |
_DESCRIPTION = """
|
|
|
|
| 886 |
_TASK_HANDLERS = {
|
| 887 |
"cage_prediction": CagePredictionHandler,
|
| 888 |
"bulk_rna_expression": BulkRnaExpressionHandler,
|
| 889 |
+
"variant_effect_causal_eqtl": VariantEffectCausalEqtl,
|
| 890 |
+
"variant_effect_pathogenic_clinvar": VariantEffectPathogenicHandler,
|
| 891 |
+
"variant_effect_pathogenic_omim": VariantEffectPathogenicHandler,
|
| 892 |
+
"chromatin_features_histone_marks": ChromatinFeaturesHandler,
|
| 893 |
+
"chromatin_features_dna_accessibility": ChromatinFeaturesHandler,
|
| 894 |
+
"regulatory_element_promoter": RegulatoryElementHandler,
|
| 895 |
+
"regulatory_element_enhancer": RegulatoryElementHandler,
|
| 896 |
}
|
| 897 |
|
| 898 |
|
|
|
|
| 908 |
**kwargs: keyword arguments forwarded to super.
|
| 909 |
"""
|
| 910 |
super().__init__()
|
| 911 |
+
self.handler = _TASK_HANDLERS[task_name](task_name=task_name, **kwargs)
|
| 912 |
|
| 913 |
|
| 914 |
# DatasetBuilder
|
|
|
|
| 942 |
|
| 943 |
|
| 944 |
"""
|
| 945 |
+
----------------------------------------------------------------------------------------
|
| 946 |
Global Utils:
|
| 947 |
+
----------------------------------------------------------------------------------------
|
| 948 |
"""
|
| 949 |
|
| 950 |
|
|
|
|
| 975 |
remainder is added to the end of the sequence.
|
| 976 |
end: End index of original sequence. If no end is specified, it creates a
|
| 977 |
centered sequence around the start index.
|
| 978 |
+
negative_strand: If negative_strand, returns the reverse compliment of the
|
| 979 |
+
sequence
|
| 980 |
"""
|
| 981 |
if end:
|
| 982 |
pad = (sequence_length - (end - start)) // 2
|