Ayushnangia commited on
Commit
b201a12
ยท
verified ยท
1 Parent(s): e781a9e

Update dataset card

Browse files
Files changed (1) hide show
  1. README.md +267 -27
README.md CHANGED
@@ -1,33 +1,273 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: commit_hash
5
- dtype: string
6
- - name: pr_url
7
- dtype: string
8
- - name: has_lm_eval
9
- dtype: bool
10
- - name: has_performance
11
- dtype: bool
12
- - name: has_serving
13
- dtype: bool
14
- - name: has_general_test
15
- dtype: bool
16
- - name: test_details
17
- dtype: string
18
- - name: timeline_text
19
- dtype: string
20
- - name: extracted_at
21
- dtype: string
22
- splits:
23
- - name: train
24
- num_bytes: 2366151
25
- num_examples: 99
26
- download_size: 744933
27
- dataset_size: 2366151
28
  configs:
29
  - config_name: default
30
  data_files:
31
  - split: train
32
- path: data/train-*
33
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ task_categories:
4
+ - text-classification
5
+ - feature-extraction
6
+ language:
7
+ - en
8
+ tags:
9
+ - software-engineering
10
+ - testing
11
+ - performance
12
+ - llm-serving
13
+ - vllm
14
+ - benchmarking
15
+ - ml-evaluation
16
+ pretty_name: vLLM PR Test Classification
17
+ size_categories:
18
+ - n<1K
 
 
 
 
 
 
 
 
 
19
  configs:
20
  - config_name: default
21
  data_files:
22
  - split: train
23
+ path: data/*
24
  ---
25
+
26
+ # vLLM PR Test Classification Dataset
27
+
28
+ ## ๐ŸŽฏ Overview
29
+
30
+ This dataset contains **98 vLLM project commits** with their corresponding Pull Request (PR) timeline data and comprehensive test type classifications. It provides insights into testing patterns in a major LLM serving infrastructure project.
31
+
32
+ ## ๐Ÿ“Š Dataset Description
33
+
34
+ ### Purpose
35
+ This dataset was created by analyzing vLLM project PR timelines to:
36
+ - Identify different types of testing and benchmarking activities
37
+ - Understand testing patterns in LLM infrastructure development
38
+ - Provide labeled data for ML models to classify test types in software PRs
39
+ - Enable research on performance optimization trends in LLM serving
40
+
41
+ ### Test Categories
42
+
43
+ Each commit is classified across four test categories:
44
+
45
+ | Category | Description | Keywords | Prevalence |
46
+ |----------|-------------|----------|------------|
47
+ | **LM Evaluation** | Language model evaluation tests | `lm_eval`, `gsm8k`, `mmlu`, `hellaswag`, `truthfulqa` | 25.5% |
48
+ | **Performance** | Performance benchmarking tests | `TTFT`, `throughput`, `latency`, `ITL`, `TPOT`, `tok/s` | 81.6% |
49
+ | **Serving** | Serving functionality tests | `vllm serve`, `API server`, `frontend`, `online serving` | 53.1% |
50
+ | **General Test** | General testing activities | `CI`, `pytest`, `unittest`, `buildkite`, `fastcheck` | 96.9% |
51
+
52
+ ## ๐Ÿ“ˆ Dataset Statistics
53
+
54
+ ### Overall Distribution
55
+ - **Total commits**: 98
56
+ - **Multi-category commits**: 76 (77.6%)
57
+ - **Average test types per commit**: 2.57
58
+
59
+ ### Detailed Keyword Frequency
60
+
61
+ #### Top Performance Keywords (80 commits)
62
+ - `throughput`: 241 mentions
63
+ - `latency`: 191 mentions
64
+ - `profiling`: 114 mentions
65
+ - `TTFT` (Time To First Token): 114 mentions
66
+ - `ITL` (Inter-token Latency): 114 mentions
67
+ - `TPOT` (Time Per Output Token): 108 mentions
68
+ - `optimization`: 87 mentions
69
+ - `tok/s` (tokens per second): 66 mentions
70
+
71
+ #### Top LM Evaluation Keywords (25 commits)
72
+ - `gsm8k`: 62 mentions
73
+ - `lm_eval`: 33 mentions
74
+ - `lm-eval`: 9 mentions
75
+ - `mmlu`: 3 mentions
76
+ - `humaneval`: 1 mention
77
+
78
+ #### Top Serving Keywords (52 commits)
79
+ - `frontend`: 181 mentions
80
+ - `serving`: 74 mentions
81
+ - `api server`: 42 mentions
82
+ - `vllm serve`: 23 mentions
83
+ - `online serving`: 19 mentions
84
+
85
+ ## ๐Ÿ—‚๏ธ Data Schema
86
+
87
+ ```python
88
+ {
89
+ 'commit_hash': str, # Git commit SHA-1 hash (40 chars)
90
+ 'pr_url': str, # GitHub PR URL (e.g., https://github.com/vllm-project/vllm/pull/12601)
91
+ 'has_lm_eval': bool, # True if commit contains LM evaluation tests
92
+ 'has_performance': bool, # True if commit contains performance benchmarks
93
+ 'has_serving': bool, # True if commit contains serving tests
94
+ 'has_general_test': bool, # True if commit contains general tests
95
+ 'test_details': str, # Pipe-separated test keywords (e.g., "PERF: ttft, throughput | TEST: ci, pytest")
96
+ 'timeline_text': str, # Full PR timeline text with comments, reviews, and commit messages
97
+ 'extracted_at': str # ISO timestamp when data was extracted
98
+ }
99
+ ```
100
+
101
+ ## ๐Ÿ’ป Usage Examples
102
+
103
+ ### Basic Loading
104
+ ```python
105
+ from datasets import load_dataset
106
+
107
+ # Load the dataset
108
+ dataset = load_dataset("your-username/vllm-pr-test-classification")
109
+
110
+ # Explore the data
111
+ print(f"Total examples: {len(dataset['train'])}")
112
+ print(f"Features: {dataset['train'].features}")
113
+ print(f"First example: {dataset['train'][0]}")
114
+ ```
115
+
116
+ ### Filtering Examples
117
+ ```python
118
+ # Get commits with performance benchmarks
119
+ perf_commits = dataset['train'].filter(lambda x: x['has_performance'])
120
+ print(f"Performance commits: {len(perf_commits)}")
121
+
122
+ # Get commits with LM evaluation
123
+ lm_eval_commits = dataset['train'].filter(lambda x: x['has_lm_eval'])
124
+ print(f"LM evaluation commits: {len(lm_eval_commits)}")
125
+
126
+ # Get commits with multiple test types
127
+ multi_test = dataset['train'].filter(
128
+ lambda x: sum([x['has_lm_eval'], x['has_performance'],
129
+ x['has_serving'], x['has_general_test']]) >= 3
130
+ )
131
+ print(f"Commits with 3+ test types: {len(multi_test)}")
132
+ ```
133
+
134
+ ### Analysis Example
135
+ ```python
136
+ import pandas as pd
137
+
138
+ # Convert to pandas for analysis
139
+ df = dataset['train'].to_pandas()
140
+
141
+ # Analyze test type combinations
142
+ test_combinations = df[['has_lm_eval', 'has_performance', 'has_serving', 'has_general_test']]
143
+ combination_counts = test_combinations.value_counts()
144
+ print("Most common test combinations:")
145
+ print(combination_counts.head())
146
+
147
+ # Extract performance metrics mentioned
148
+ perf_df = df[df['has_performance']]
149
+ print(f"\nCommits mentioning specific metrics:")
150
+ print(f"TTFT mentions: {perf_df['test_details'].str.contains('TTFT').sum()}")
151
+ print(f"Throughput mentions: {perf_df['test_details'].str.contains('throughput', case=False).sum()}")
152
+ ```
153
+
154
+ ### Text Classification Training
155
+ ```python
156
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
157
+ from transformers import TrainingArguments, Trainer
158
+
159
+ # Prepare for multi-label classification
160
+ def preprocess_function(examples):
161
+ # Create multi-label targets
162
+ labels = []
163
+ for i in range(len(examples['commit_hash'])):
164
+ label = [
165
+ int(examples['has_lm_eval'][i]),
166
+ int(examples['has_performance'][i]),
167
+ int(examples['has_serving'][i]),
168
+ int(examples['has_general_test'][i])
169
+ ]
170
+ labels.append(label)
171
+
172
+ # Tokenize timeline text
173
+ tokenized = tokenizer(
174
+ examples['timeline_text'],
175
+ truncation=True,
176
+ padding='max_length',
177
+ max_length=512
178
+ )
179
+ tokenized['labels'] = labels
180
+ return tokenized
181
+
182
+ # Train a classifier to identify test types from PR text
183
+ tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
184
+ model = AutoModelForSequenceClassification.from_pretrained(
185
+ "bert-base-uncased",
186
+ num_labels=4,
187
+ problem_type="multi_label_classification"
188
+ )
189
+ ```
190
+
191
+ ## ๐Ÿ” Sample Data
192
+
193
+ ### Example 1: Performance-focused commit
194
+ ```json
195
+ {
196
+ "commit_hash": "fc542144c4477ffec1d3de6fa43e54f8fb5351e8",
197
+ "pr_url": "https://github.com/vllm-project/vllm/pull/12563",
198
+ "has_lm_eval": false,
199
+ "has_performance": true,
200
+ "has_serving": false,
201
+ "has_general_test": true,
202
+ "test_details": "PERF: tok/s, optimization | TEST: CI",
203
+ "timeline_text": "[Guided decoding performance optimization]..."
204
+ }
205
+ ```
206
+
207
+ ### Example 2: Comprehensive testing commit
208
+ ```json
209
+ {
210
+ "commit_hash": "aea94362c9bdd08ed2b346701bdc09d278e85f66",
211
+ "pr_url": "https://github.com/vllm-project/vllm/pull/12287",
212
+ "has_lm_eval": true,
213
+ "has_performance": true,
214
+ "has_serving": true,
215
+ "has_general_test": true,
216
+ "test_details": "LM_EVAL: lm_eval, gsm8k | PERF: TTFT, ITL | SERVING: vllm serve | TEST: test, CI",
217
+ "timeline_text": "[Frontend][V1] Online serving performance improvements..."
218
+ }
219
+ ```
220
+
221
+ ## ๐Ÿ› ๏ธ Potential Use Cases
222
+
223
+ 1. **Test Type Classification**: Train models to automatically classify test types in software PRs
224
+ 2. **Testing Pattern Analysis**: Study how different test types correlate in infrastructure projects
225
+ 3. **Performance Optimization Research**: Analyze performance testing trends in LLM serving systems
226
+ 4. **CI/CD Insights**: Understand continuous integration patterns in ML infrastructure projects
227
+ 5. **Documentation Generation**: Generate test documentation from PR timelines
228
+ 6. **Code Review Automation**: Build tools to automatically suggest relevant tests based on PR content
229
+
230
+ ## ๐Ÿ“š Source
231
+
232
+ This dataset was extracted from the [vLLM project](https://github.com/vllm-project/vllm) GitHub repository PR timelines. vLLM is a high-throughput and memory-efficient inference and serving engine for LLMs.
233
+
234
+ ## ๐Ÿ”„ Updates
235
+
236
+ - **v1.0.0** (2025-01): Initial release with 98 commits
237
+
238
+ ## ๐Ÿ“œ License
239
+
240
+ This dataset is released under the MIT License, consistent with the vLLM project's licensing.
241
+
242
+ ## ๐Ÿ“– Citation
243
+
244
+ If you use this dataset in your research or applications, please cite:
245
+
246
+ ```bibtex
247
+ @dataset{vllm_pr_test_classification_2025,
248
+ title={vLLM PR Test Classification Dataset},
249
+ author={vLLM Community Contributors},
250
+ year={2025},
251
+ publisher={Hugging Face},
252
+ url={https://huggingface.co/datasets/your-username/vllm-pr-test-classification},
253
+ note={A dataset of 98 vLLM commits with test type classifications extracted from GitHub PR timelines}
254
+ }
255
+ ```
256
+
257
+ ## ๐Ÿค Contributing
258
+
259
+ If you'd like to contribute to this dataset or report issues:
260
+ 1. Open an issue on the Hugging Face dataset repository
261
+ 2. Submit improvements via pull requests
262
+ 3. Share your use cases and findings
263
+
264
+ ## โš ๏ธ Limitations
265
+
266
+ - Dataset size is limited to 98 commits
267
+ - Timeline text may be truncated for very long PR discussions
268
+ - Classification is based on keyword matching, which may miss context-dependent references
269
+ - Dataset represents a snapshot from specific time period of vLLM development
270
+
271
+ ## ๐Ÿ™ Acknowledgments
272
+
273
+ Thanks to the vLLM project maintainers and contributors for their open-source work that made this dataset possible.