Datasets:
				
			
			
	
			
			
	
		Tasks:
	
	
	
	
	Text Generation
	
	
	Size:
	
	
	
	
	10K - 100K
	
	
	File size: 4,804 Bytes
			
			| 2b65a1d cd95606 2b65a1d cd95606 2b65a1d cd95606 2b65a1d cd95606 2b65a1d cd95606 2b65a1d cd95606 2b65a1d cd95606 2b65a1d 497e94f 876f047 2b65a1d 497e94f 3e67cc2 497e94f 3e67cc2 497e94f 95e3688 8cd5b5e 95e3688 497e94f 95e3688 497e94f 66c9469 497e94f 66c9469 20f144b 497e94f 7241b46 497e94f | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 | ---
dataset_info:
  features:
  - name: id
    dtype: uint32
  - name: language
    dtype: string
  - name: url
    dtype: string
  - name: title
    dtype: string
  - name: text_markdown
    dtype: string
  - name: text_html
    dtype: string
  - name: author
    dtype: string
  - name: original_author
    dtype: string
  - name: original_url
    dtype: string
  - name: lead_html
    dtype: string
  - name: lead_markdown
    dtype: string
  - name: type
    dtype: string
  - name: time_published
    dtype: uint64
  - name: statistics
    struct:
    - name: commentsCount
      dtype: uint32
    - name: favoritesCount
      dtype: uint32
    - name: readingCount
      dtype: uint32
    - name: score
      dtype: int32
    - name: votesCount
      dtype: int32
    - name: votesCountPlus
      dtype: int32
    - name: votesCountMinus
      dtype: int32
  - name: labels
    sequence: string
  - name: hubs
    sequence: string
  - name: flows
    sequence: string
  - name: tags
    sequence: string
  - name: reading_time
    dtype: uint32
  - name: format
    dtype: string
  - name: complexity
    dtype: string
  - name: comments
    sequence:
    - name: id
      dtype: uint64
    - name: parent_id
      dtype: uint64
    - name: level
      dtype: uint32
    - name: time_published
      dtype: uint64
    - name: score
      dtype: int32
    - name: votes
      dtype: uint32
    - name: message_html
      dtype: string
    - name: message_markdown
      dtype: string
    - name: author
      dtype: string
    - name: children
      sequence: uint64
  splits:
  - name: train
    num_bytes: 19968161329
    num_examples: 302049
  download_size: 3485570346
  dataset_size: 19968161329
task_categories:
- text-generation
language:
- ru
- en
size_categories:
- 100K<n<1M
---
# Habr dataset
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Description](#description)
- [Usage](#usage)
- [Data Instances](#data-instances)
- [Source Data](#source-data)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
## Description
**Summary:** Dataset of posts and comments from [habr.com](https://habr.com/ru/all/), a Russian collaborative blog about IT, computer science and anything related to the Internet.
**Script:** [create_habr.py](https://github.com/IlyaGusev/rulm/blob/master/data_processing/create_habr.py)
**Point of Contact:** [Ilya Gusev]([email protected])
**Languages:** Russian, English, some programming code.
## Usage
Prerequisites:
```bash
pip install datasets zstandard jsonlines pysimdjson
```
Dataset iteration:
```python
from datasets import load_dataset
dataset = load_dataset('IlyaGusev/habr', split="train", streaming=True)
for example in dataset:
    print(example["text_markdown"])
```
## Data Instances
```
{
  "id": 12730,
  "language": "ru",
  "url": "https://habr.com/ru/post/12730/",
  "text_markdown": "...",
  "text_html": "...",
  "lead_markdown": "...",
  "lead_html": "...",
  "type": "article",
  "labels": [],
  "original_author": null,
  "original_url": null,
  "time_published": 1185962380,
  "author": "...",
  "title": "Хочешь в университет — сделай презентацию",
  "statistics": {
    "commentsCount": 23,
    "favoritesCount": 1,
    "readingCount": 1542,
    "score": 7,
    "votesCount": 15,
    "votesCountPlus": 11,
    "votesCountMinus": 4
  },
  "hubs": [
    "itcompanies"
  ],
  "flows": [
    "popsci"
  ],
  "tags": [
    "PowerPoint",
    "презентация",
    "абитуриенты",
  ],
  "reading_time": 1,
  "format": null,
  "complexity": null,
  "comments": {
    "id": [11653537, 11653541],
    "parent_id": [null, 11653537],
    "level": [0, 1],
    "time_published": [1185963192, 1185967886],
    "score": [-1, 0],
    "votes": [1, 0],
    "message_html": ["...", "..."],
    "author": ["...", "..."],
    "children": [[11653541], []]
  }
}
```
You can use this little helper to unflatten sequences:
```python
def revert_flattening(records):
    fixed_records = []
    for key, values in records.items():
        if not fixed_records:
            fixed_records = [{} for _ in range(len(values))]
        for i, value in enumerate(values):
            fixed_records[i][key] = value
    return fixed_records
```
The original JSONL is already unflattened.
## Source Data
* The data source is the [Habr](https://habr.com/) website.
* API call example: [post 709430](https://habr.com/kek/v2/articles/709430).
* Processing script is [here](https://github.com/IlyaGusev/rulm/blob/master/data_processing/create_habr.py). 
## Personal and Sensitive Information
The dataset is not anonymized, so individuals' names can be found in the dataset. Information about the original authors is included in the dataset where possible.
 | 
