Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -131,21 +131,19 @@ print(f"RMSE: {rmse}")
|
|
131 |
|
132 |
---
|
133 |
|
134 |
-
|
135 |
-
|
136 |
|
137 |
-
|
138 |
|
139 |
-
|
140 |
|
141 |
-
[
|
142 |
-
**Baseline_XGBoost_Resource_Estimation.ipynb**
|
143 |
|
144 |
This notebook covers:
|
145 |
- Loading and preprocessing metadata from `dataset-new.csv`
|
146 |
- Training an XGBoost regressor to predict training time
|
147 |
- Evaluating model performance (e.g., RMSE)
|
148 |
-
- Guidance for extending to advanced models (e.g., incorporating HLO graph features)
|
149 |
|
150 |
> ⚡ **Note:** Make sure to adjust paths if cloning the dataset locally or integrating with Hugging Face `datasets` API.
|
151 |
|
|
|
131 |
|
132 |
---
|
133 |
|
134 |
+
### Example Notebooks
|
135 |
+
#### 🚀 Baseline: XGBoost for Resource Estimation
|
136 |
|
137 |
+
A sample baseline implementation using **XGBoost** is provided to demonstrate how to predict resource metrics such as `fit_time` using the dataset's metadata.
|
138 |
|
139 |
+
📥 **Download the notebook** from the repository:
|
140 |
|
141 |
+
[Baseline_XGBoost_Resource_Estimation.ipynb](https://huggingface.co/datasets/ICICLE-AI/ResourceEstimation_HLOGenCNN/blob/main/Baseline_XGBoost_Resource_Estimation.ipynb)
|
|
|
142 |
|
143 |
This notebook covers:
|
144 |
- Loading and preprocessing metadata from `dataset-new.csv`
|
145 |
- Training an XGBoost regressor to predict training time
|
146 |
- Evaluating model performance (e.g., RMSE)
|
|
|
147 |
|
148 |
> ⚡ **Note:** Make sure to adjust paths if cloning the dataset locally or integrating with Hugging Face `datasets` API.
|
149 |
|