|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""VQA v2 loading script.""" |
|
|
|
|
|
import json |
|
from pathlib import Path |
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{johnson2017clevr, |
|
title={Clevr: A diagnostic dataset for compositional language and elementary visual reasoning}, |
|
author={Johnson, Justin and Hariharan, Bharath and Van Der Maaten, Laurens and Fei-Fei, Li and Lawrence Zitnick, C and Girshick, Ross}, |
|
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition}, |
|
pages={2901--2910}, |
|
year={2017} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
CLEVR is a diagnostic dataset that tests a range of visual reasoning abilities. It contains minimal biases and has detailed annotations describing the kind of reasoning each question requires. We use this dataset to analyze a variety of modern visual reasoning systems, providing novel insights into their abilities and limitations. |
|
""" |
|
|
|
_HOMEPAGE = "https://cs.stanford.edu/people/jcjohns/clevr/" |
|
|
|
_LICENSE = "CC BY 4.0" |
|
|
|
_URLS = "https://dl.fbaipublicfiles.com/clevr/CLEVR_v1.0.zip" |
|
|
|
CLASSES = [ |
|
"0", |
|
"gray", |
|
"cube", |
|
"purple", |
|
"yes", |
|
"small", |
|
"brown", |
|
"red", |
|
"blue", |
|
"7", |
|
"5", |
|
"8", |
|
"metal", |
|
"6", |
|
"rubber", |
|
"1", |
|
"sphere", |
|
"cylinder", |
|
"3", |
|
"10", |
|
"2", |
|
"yellow", |
|
"cyan", |
|
"green", |
|
"9", |
|
"large", |
|
"no", |
|
"4", |
|
] |
|
|
|
|
|
class ClevrDataset(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
DEFAULT_BUILD_CONFIG_NAME = "default" |
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="default", |
|
version=VERSION, |
|
description="This config returns answers as plain text", |
|
), |
|
datasets.BuilderConfig( |
|
name="classification", |
|
version=VERSION, |
|
description="This config returns answers as class labels", |
|
) |
|
|
|
] |
|
def _info(self): |
|
if self.config.name == "classification": |
|
answer_feature = datasets.ClassLabel(names=CLASSES) |
|
else: |
|
answer_feature = datasets.Value("string") |
|
features = datasets.Features( |
|
{ |
|
"question_index": datasets.Value("int64"), |
|
"question_family_index": datasets.Value("int64"), |
|
"image_filename": datasets.Value("string"), |
|
"split": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answer": answer_feature, |
|
"image": datasets.Image(), |
|
"image_index": datasets.Value("int64"), |
|
"program": datasets.Sequence({ |
|
"inputs": datasets.Sequence(datasets.Value("int64")), |
|
"function": datasets.Value("string"), |
|
"value_inputs": datasets.Sequence(datasets.Value("string")), |
|
}), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = dl_manager.download_and_extract(_URLS) |
|
gen_kwargs = { |
|
split_name: { |
|
"split": split_name, |
|
"questions_path": Path(data_dir) / "CLEVR_v1.0" / "questions" / f"CLEVR_{split_name}_questions.json", |
|
"image_folder": Path(data_dir) / "CLEVR_v1.0" / "images" / f"{split_name}", |
|
} |
|
for split_name in ["train", "val", "test"] |
|
} |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs=gen_kwargs["train"], |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs=gen_kwargs["val"], |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs=gen_kwargs["test"], |
|
), |
|
] |
|
|
|
def _generate_examples(self, split, questions_path, image_folder): |
|
questions = json.load(open(questions_path, "r")) |
|
|
|
for idx, question in enumerate(questions["questions"]): |
|
question["image"] = str(image_folder / f"{question['image_filename']}") |
|
if split == "test": |
|
question["question_family_index"] = -1 |
|
question["answer"] = -1 if self.config.name == "classification" else "" |
|
question["program"] = [ |
|
{ |
|
"inputs": [], |
|
"function": "scene", |
|
"value_inputs": [], |
|
} |
|
] |
|
yield idx, question |
|
|
|
|