Update README.md
Browse files
README.md
CHANGED
@@ -1,68 +1,47 @@
|
|
1 |
-
|
2 |
-
task_categories:
|
3 |
-
- image-classification
|
4 |
-
size_categories:
|
5 |
-
- 10K<n<100K
|
6 |
-
language:
|
7 |
-
- en
|
8 |
-
tags:
|
9 |
-
- image
|
10 |
-
- artwork
|
11 |
-
- museum
|
12 |
-
configs:
|
13 |
-
- config_name: mame_dataset
|
14 |
-
data_files:
|
15 |
-
- path: data/dataset.csv
|
16 |
-
description: "Main dataset file containing all splits (train, val, test)"
|
17 |
-
- path: data/images/small.zip
|
18 |
-
description: "ZIP file containing all image files"
|
19 |
-
- path: data/labels.csv
|
20 |
-
description: "File containing label mappings"
|
21 |
dataset_info:
|
22 |
features:
|
23 |
- name: image
|
24 |
dtype: string
|
25 |
-
description: "Filename of the image (e.g., '1234.jpg'). The actual image file is located in data/images/small.zip"
|
26 |
- name: medium
|
27 |
dtype:
|
28 |
class_label:
|
29 |
names:
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
- name: museum
|
60 |
dtype: string
|
61 |
- name: museum_id
|
62 |
dtype: string
|
63 |
- name: subset
|
64 |
dtype: string
|
65 |
-
description: "Indicates whether the sample belongs to 'train', 'val', or 'test' split"
|
66 |
- name: width
|
67 |
dtype: int32
|
68 |
- name: height
|
@@ -70,4 +49,116 @@ dataset_info:
|
|
70 |
- name: product_size
|
71 |
dtype: int32
|
72 |
- name: aspect_ratio
|
73 |
-
dtype: float32
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
dataset_info:
|
3 |
features:
|
4 |
- name: image
|
5 |
dtype: string
|
|
|
6 |
- name: medium
|
7 |
dtype:
|
8 |
class_label:
|
9 |
names:
|
10 |
+
0: Albumen photograph
|
11 |
+
1: Bronze
|
12 |
+
2: Ceramic
|
13 |
+
3: Clay
|
14 |
+
4: Engraving
|
15 |
+
5: Etching
|
16 |
+
6: Faience
|
17 |
+
7: Glass
|
18 |
+
8: Gold
|
19 |
+
9: Graphite
|
20 |
+
10: Hand-colored engraving
|
21 |
+
11: Hand-colored etching
|
22 |
+
12: Iron
|
23 |
+
13: Ivory
|
24 |
+
14: Limestone
|
25 |
+
15: Lithograph
|
26 |
+
16: Marble
|
27 |
+
17: Oil on canvas
|
28 |
+
18: Pen and brown ink
|
29 |
+
19: Polychromed wood
|
30 |
+
20: Porcelain
|
31 |
+
21: Silk and metal thread
|
32 |
+
22: Silver
|
33 |
+
23: Steel
|
34 |
+
24: Wood
|
35 |
+
25: Wood engraving
|
36 |
+
26: Woodblock
|
37 |
+
27: Woodcut
|
38 |
+
28: Woven fabric
|
39 |
- name: museum
|
40 |
dtype: string
|
41 |
- name: museum_id
|
42 |
dtype: string
|
43 |
- name: subset
|
44 |
dtype: string
|
|
|
45 |
- name: width
|
46 |
dtype: int32
|
47 |
- name: height
|
|
|
49 |
- name: product_size
|
50 |
dtype: int32
|
51 |
- name: aspect_ratio
|
52 |
+
dtype: float32
|
53 |
+
configs:
|
54 |
+
- config_name: default
|
55 |
+
data_files:
|
56 |
+
- split: train
|
57 |
+
path: data/dataset.csv
|
58 |
+
download_mode: reuse_dataset_if_exists
|
59 |
+
download_size: ???
|
60 |
+
features:
|
61 |
+
- name: image
|
62 |
+
dtype: string
|
63 |
+
- name: medium
|
64 |
+
dtype: int64
|
65 |
+
- name: museum
|
66 |
+
dtype: string
|
67 |
+
- name: museum_id
|
68 |
+
dtype: string
|
69 |
+
- name: subset
|
70 |
+
dtype: string
|
71 |
+
- name: width
|
72 |
+
dtype: int32
|
73 |
+
- name: height
|
74 |
+
dtype: int32
|
75 |
+
- name: product_size
|
76 |
+
dtype: int32
|
77 |
+
- name: aspect_ratio
|
78 |
+
dtype: float32
|
79 |
+
dataset_size: ???
|
80 |
+
splits:
|
81 |
+
- name: train
|
82 |
+
num_bytes: ???
|
83 |
+
num_examples: ???
|
84 |
+
pretty_name: MAMe Dataset
|
85 |
+
size_categories:
|
86 |
+
- 10K<n<100K
|
87 |
+
task_categories:
|
88 |
+
- image-classification
|
89 |
+
tags:
|
90 |
+
- image
|
91 |
+
- artwork
|
92 |
+
- museum
|
93 |
+
|
94 |
+
---
|
95 |
+
|
96 |
+
## MAMe Dataset: Museum Artworks Medium
|
97 |
+
|
98 |
+
The MAMe Dataset is an image classification dataset focused on the recognition of mediums in artworks and heritage held by museums (e.g., Oil on canvas, Bronze or Woodcut).
|
99 |
+
|
100 |
+
The classes considered in the MAMe dataset comprise a wide variety of mediums according to both interpretations of the term. These can range from simple material aspects (e.g., Bronze, Silver or Gold) to complex, high-level techniques (e.g., Faience, Woodblock or Woven fabric). The variety of relevant features in MAMe requires both attention to detail and to the overall image structure.
|
101 |
+
|
102 |
+
---
|
103 |
+
|
104 |
+
### Paper
|
105 |
+
|
106 |
+
- Journal Version: [Materials in Art and Museum Environment (MAMe): A Dataset for Art Material Recognition](https://link.springer.com/article/10.1007/s10489-021-02951-w)
|
107 |
+
- ArXiv Version: [MAMe: A Dataset for Multi-class Classification of Materials in Artworks](https://arxiv.org/pdf/2007.13693)
|
108 |
+
|
109 |
+
---
|
110 |
+
|
111 |
+
### Dataset Variants: TODO
|
112 |
+
|
113 |
+
- **MAMe_small**: A toy version of the dataset, optimized for quick experimentation and lighter storage needs.
|
114 |
+
- **MAMe_original**: The original version of the dataset, meant for detailed tasks requiring precision in material classification.
|
115 |
+
|
116 |
+
---
|
117 |
+
|
118 |
+
### Dataset Description
|
119 |
+
|
120 |
+
The MAMe dataset contains thousands of artworks from three different museums, and proposes a classification task consisting on differentiating between 29 mediums (i.e. materials and techniques) supervised by art experts.
|
121 |
+
|
122 |
+
- **Curated by**: HPAI
|
123 |
+
- **License**: The MAMe dataset is available for non-commercial research purposes only.
|
124 |
+
|
125 |
+
### Citation
|
126 |
+
|
127 |
+
If you use this dataset, please cite the following journal paper:
|
128 |
+
|
129 |
+
```bibtex
|
130 |
+
@article{pares2022mame,
|
131 |
+
title={The MAMe dataset: on the relevance of high resolution and variable shape image properties},
|
132 |
+
author={Par{\'e}s, Ferran and Arias-Duart, Anna and Garcia-Gasulla, Dario and others},
|
133 |
+
journal={Applied Intelligence},
|
134 |
+
volume={52},
|
135 |
+
number={12},
|
136 |
+
pages={11703--11724},
|
137 |
+
year={2022},
|
138 |
+
publisher={Springer},
|
139 |
+
doi={10.1007/s10489-021-02951-w}
|
140 |
+
}
|
141 |
+
```
|
142 |
+
|
143 |
+
For accessibility purposes, you can also reference the ArXiv version:
|
144 |
+
|
145 |
+
```bibtex
|
146 |
+
@article{pares2020mame,
|
147 |
+
title={The MAMe Dataset: On the relevance of High Resolution and Variable Shape image properties},
|
148 |
+
author={Par{\'e}s, Ferran and Arias-Duart, Anna and Garcia-Gasulla, Dario and Campo-Franc{\'e}s, Gema and Viladrich, Nina and Labarta, Jes{\'u}s and Ayguad{\'e}, Eduard},
|
149 |
+
journal={arXiv preprint arXiv:2007.13693},
|
150 |
+
year={2020},
|
151 |
+
url = {https://arxiv.org/pdf/2007.13693}
|
152 |
+
}
|
153 |
+
```
|
154 |
+
|
155 |
+
---
|
156 |
+
|
157 |
+
### Dataset Card Authors
|
158 |
+
|
159 |
+
[Ferran Parés]([email protected]), [Anna Arias-Duart]([email protected]), [Dario Garcia-Gasulla]([email protected])
|
160 |
+
|
161 |
+
|
162 |
+
### Dataset Card Contact
|
163 |
+
|
164 |
+
For more information or questions about this dataset, please contact the [HPAI organization](https://hpai.bsc.es).
|