Datasets:

Modalities:
Image
ArXiv:
OscarMolina commited on
Commit
c332e04
·
verified ·
1 Parent(s): e60d556

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +143 -52
README.md CHANGED
@@ -1,68 +1,47 @@
1
- pretty_name: MAMe Dataset
2
- task_categories:
3
- - image-classification
4
- size_categories:
5
- - 10K<n<100K
6
- language:
7
- - en
8
- tags:
9
- - image
10
- - artwork
11
- - museum
12
- configs:
13
- - config_name: mame_dataset
14
- data_files:
15
- - path: data/dataset.csv
16
- description: "Main dataset file containing all splits (train, val, test)"
17
- - path: data/images/small.zip
18
- description: "ZIP file containing all image files"
19
- - path: data/labels.csv
20
- description: "File containing label mappings"
21
  dataset_info:
22
  features:
23
  - name: image
24
  dtype: string
25
- description: "Filename of the image (e.g., '1234.jpg'). The actual image file is located in data/images/small.zip"
26
  - name: medium
27
  dtype:
28
  class_label:
29
  names:
30
- '0': Albumen photograph
31
- '1': Bronze
32
- '2': Ceramic
33
- '3': Clay
34
- '4': Engraving
35
- '5': Etching
36
- '6': Faience
37
- '7': Glass
38
- '8': Gold
39
- '9': Graphite
40
- '10': Hand-colored engraving
41
- '11': Hand-colored etching
42
- '12': Iron
43
- '13': Ivory
44
- '14': Limestone
45
- '15': Lithograph
46
- '16': Marble
47
- '17': Oil on canvas
48
- '18': Pen and brown ink
49
- '19': Polychromed wood
50
- '20': Porcelain
51
- '21': Silk and metal thread
52
- '22': Silver
53
- '23': Steel
54
- '24': Wood
55
- '25': Wood engraving
56
- '26': Woodblock
57
- '27': Woodcut
58
- '28': Woven fabric
59
  - name: museum
60
  dtype: string
61
  - name: museum_id
62
  dtype: string
63
  - name: subset
64
  dtype: string
65
- description: "Indicates whether the sample belongs to 'train', 'val', or 'test' split"
66
  - name: width
67
  dtype: int32
68
  - name: height
@@ -70,4 +49,116 @@ dataset_info:
70
  - name: product_size
71
  dtype: int32
72
  - name: aspect_ratio
73
- dtype: float32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  features:
4
  - name: image
5
  dtype: string
 
6
  - name: medium
7
  dtype:
8
  class_label:
9
  names:
10
+ 0: Albumen photograph
11
+ 1: Bronze
12
+ 2: Ceramic
13
+ 3: Clay
14
+ 4: Engraving
15
+ 5: Etching
16
+ 6: Faience
17
+ 7: Glass
18
+ 8: Gold
19
+ 9: Graphite
20
+ 10: Hand-colored engraving
21
+ 11: Hand-colored etching
22
+ 12: Iron
23
+ 13: Ivory
24
+ 14: Limestone
25
+ 15: Lithograph
26
+ 16: Marble
27
+ 17: Oil on canvas
28
+ 18: Pen and brown ink
29
+ 19: Polychromed wood
30
+ 20: Porcelain
31
+ 21: Silk and metal thread
32
+ 22: Silver
33
+ 23: Steel
34
+ 24: Wood
35
+ 25: Wood engraving
36
+ 26: Woodblock
37
+ 27: Woodcut
38
+ 28: Woven fabric
39
  - name: museum
40
  dtype: string
41
  - name: museum_id
42
  dtype: string
43
  - name: subset
44
  dtype: string
 
45
  - name: width
46
  dtype: int32
47
  - name: height
 
49
  - name: product_size
50
  dtype: int32
51
  - name: aspect_ratio
52
+ dtype: float32
53
+ configs:
54
+ - config_name: default
55
+ data_files:
56
+ - split: train
57
+ path: data/dataset.csv
58
+ download_mode: reuse_dataset_if_exists
59
+ download_size: ???
60
+ features:
61
+ - name: image
62
+ dtype: string
63
+ - name: medium
64
+ dtype: int64
65
+ - name: museum
66
+ dtype: string
67
+ - name: museum_id
68
+ dtype: string
69
+ - name: subset
70
+ dtype: string
71
+ - name: width
72
+ dtype: int32
73
+ - name: height
74
+ dtype: int32
75
+ - name: product_size
76
+ dtype: int32
77
+ - name: aspect_ratio
78
+ dtype: float32
79
+ dataset_size: ???
80
+ splits:
81
+ - name: train
82
+ num_bytes: ???
83
+ num_examples: ???
84
+ pretty_name: MAMe Dataset
85
+ size_categories:
86
+ - 10K<n<100K
87
+ task_categories:
88
+ - image-classification
89
+ tags:
90
+ - image
91
+ - artwork
92
+ - museum
93
+
94
+ ---
95
+
96
+ ## MAMe Dataset: Museum Artworks Medium
97
+
98
+ The MAMe Dataset is an image classification dataset focused on the recognition of mediums in artworks and heritage held by museums (e.g., Oil on canvas, Bronze or Woodcut).
99
+
100
+ The classes considered in the MAMe dataset comprise a wide variety of mediums according to both interpretations of the term. These can range from simple material aspects (e.g., Bronze, Silver or Gold) to complex, high-level techniques (e.g., Faience, Woodblock or Woven fabric). The variety of relevant features in MAMe requires both attention to detail and to the overall image structure.
101
+
102
+ ---
103
+
104
+ ### Paper
105
+
106
+ - Journal Version: [Materials in Art and Museum Environment (MAMe): A Dataset for Art Material Recognition](https://link.springer.com/article/10.1007/s10489-021-02951-w)
107
+ - ArXiv Version: [MAMe: A Dataset for Multi-class Classification of Materials in Artworks](https://arxiv.org/pdf/2007.13693)
108
+
109
+ ---
110
+
111
+ ### Dataset Variants: TODO
112
+
113
+ - **MAMe_small**: A toy version of the dataset, optimized for quick experimentation and lighter storage needs.
114
+ - **MAMe_original**: The original version of the dataset, meant for detailed tasks requiring precision in material classification.
115
+
116
+ ---
117
+
118
+ ### Dataset Description
119
+
120
+ The MAMe dataset contains thousands of artworks from three different museums, and proposes a classification task consisting on differentiating between 29 mediums (i.e. materials and techniques) supervised by art experts.
121
+
122
+ - **Curated by**: HPAI
123
+ - **License**: The MAMe dataset is available for non-commercial research purposes only.
124
+
125
+ ### Citation
126
+
127
+ If you use this dataset, please cite the following journal paper:
128
+
129
+ ```bibtex
130
+ @article{pares2022mame,
131
+ title={The MAMe dataset: on the relevance of high resolution and variable shape image properties},
132
+ author={Par{\'e}s, Ferran and Arias-Duart, Anna and Garcia-Gasulla, Dario and others},
133
+ journal={Applied Intelligence},
134
+ volume={52},
135
+ number={12},
136
+ pages={11703--11724},
137
+ year={2022},
138
+ publisher={Springer},
139
+ doi={10.1007/s10489-021-02951-w}
140
+ }
141
+ ```
142
+
143
+ For accessibility purposes, you can also reference the ArXiv version:
144
+
145
+ ```bibtex
146
+ @article{pares2020mame,
147
+ title={The MAMe Dataset: On the relevance of High Resolution and Variable Shape image properties},
148
+ author={Par{\'e}s, Ferran and Arias-Duart, Anna and Garcia-Gasulla, Dario and Campo-Franc{\'e}s, Gema and Viladrich, Nina and Labarta, Jes{\'u}s and Ayguad{\'e}, Eduard},
149
+ journal={arXiv preprint arXiv:2007.13693},
150
+ year={2020},
151
+ url = {https://arxiv.org/pdf/2007.13693}
152
+ }
153
+ ```
154
+
155
+ ---
156
+
157
+ ### Dataset Card Authors
158
+
159
+ [Ferran Parés]([email protected]), [Anna Arias-Duart]([email protected]), [Dario Garcia-Gasulla]([email protected])
160
+
161
+
162
+ ### Dataset Card Contact
163
+
164
+ For more information or questions about this dataset, please contact the [HPAI organization](https://hpai.bsc.es).