import argparse import random import os # Read arguments parser = argparse.ArgumentParser(description="Generate test and val splits for the Facets-OOD-detection dataset") parser.add_argument("-t", "--threshold", default="1", help="Can be 1 or 2: images (from the SUN397 dataset) that have OODness lower or equal to the threshold are considered in-distribution") parser.add_argument("-v", "--val_perc", default="0.5", help="Percentage (as ratio, between 0 and 1) of images to be used as validation set. Remaining images are used as test set") parser.add_argument("-s", "--seed", default="1234", help="PRNG seed used to generate random numbers") args = parser.parse_args() datasets = ['places_val', 'sun', 'in_val', 'in_train'] ID = 0 OOD = 1 threshold = int(args.threshold) val_perc = float(args.val_perc) random.seed(int(args.seed)) counters = [0, 0] # Stratified sampling to obtain test and val splits of the Facets OOD-detection dataset # Output format: oodness (0/1), dataset_index (0-3), class_index (dataset dependent), image_path (relative to the dataset folder) # Code is largely improvable (remove duplicated code and reduce complexity) # Create output files with open("facets_ood_val_t" + args.threshold + ".txt", "w") as f_val: with open("facets_ood_test_t" + args.threshold + ".txt", "w") as f_test: # Places365-Standard validation set with open("../places365-standard-small/places365_val.txt", "r") as places_val_list: places_val = {} for line in places_val_list: fields = line.split() if not fields[1] in places_val: places_val[fields[1]] = [] places_val[fields[1]].append(fields[0]) for class_index, images in places_val.items(): output_line = str(ID) + " places_val " + class_index + " " class_count = len(images) val_num = round(class_count * val_perc) # flags = random.sample([True, False], counts=[val_num, class_count-val_num], k=class_count) # Python 3.9+ flags = random.sample([True for _ in range(val_num)] + [False for _ in range(class_count - val_num)], k=class_count) for i in range(class_count): if flags[i]: f_val.write(output_line + images[i] + "\n") else: f_test.write(output_line + images[i] + "\n") counters[ID] += 1 # sun for oodness in range(4): sun = {} with open("sun_oodness_" + str(oodness) + ".txt", "r") as f: for line in f: fields = line.split() if not fields[0] in sun: sun[fields[0]] = [] sun[fields[0]].append(fields[1]) for class_index, images in sun.items(): if oodness <= threshold: split_oodness = ID else: split_oodness = OOD output_line = str(split_oodness) + " sun " + str(class_index) + " " class_count = len(images) val_num = round(class_count * val_perc) flags = random.sample([True for _ in range(val_num)] + [False for _ in range(class_count-val_num)], k=class_count) for i in range(class_count): if flags[i]: f_val.write(output_line + images[i] + "\n") else: f_test.write(output_line + images[i] + "\n") counters[split_oodness] += 1 # ImageNet val with open("imagenet_val_oodness.txt", "r") as f: imagenet_val = {} for line in f: fields = line.split() if not fields[0] in imagenet_val: imagenet_val[fields[0]] = [] imagenet_val[fields[0]].append((fields[1], ID if fields[2]=="0" else OOD)) for class_index, images in imagenet_val.items(): class_count = len(images) val_num = round(class_count * val_perc) flags = random.sample([True for _ in range(val_num)] + [False for _ in range(class_count - val_num)], k=class_count) for i in range(class_count): if flags[i]: f_val.write(str(images[i][1]) + " in_val " + str(class_index) + " " + images[i][0] + "\n") else: f_test.write(str(images[i][1]) + " in_val " + str(class_index) + " " + images[i][0] + "\n") counters[images[i][1]] += 1 # ImageNet train # Improvable code missing_ood_samples = counters[ID] - counters[OOD] if missing_ood_samples > 0: imagenet_synsets = [] imagenet_train_dir = "../imagenet2012/ILSVRC/Data/CLS-LOC/train/" imagenet = {} with open("../imagenet2012/LOC_synset_mapping.txt", "r") as f: for line in f: imagenet_synsets.append(line.split()[0]) with open("ImageNet_OOD_classes.txt", "r") as f: for line in f: class_index = int(line.split(":")[0]) synset = imagenet_synsets[class_index] imagenet[str(class_index)] = synset ood_classes = len(imagenet.keys()) samples_per_class = missing_ood_samples // ood_classes remainder = missing_ood_samples % ood_classes for class_index, synset in imagenet.items(): class_images = os.listdir(imagenet_train_dir + synset) sample = random.sample(class_images, k=samples_per_class if remainder == 0 else samples_per_class + 1) if remainder > 0: remainder -= 1 # Split between test and val class_tot = len(sample) val_count = round(class_tot * val_perc) flags = random.sample([True for _ in range(val_count)] + [False for _ in range(class_tot - val_count)], k=class_tot) output_line = str(OOD) + " in_train " + class_index + " " + synset + "/" for i in range(class_tot): if flags[i]: f_val.write(output_line + sample[i] + "\n") else: f_test.write(output_line + sample[i] + "\n") counters[OOD] += 1 print("Tot id samples:", counters[ID]) print("Tot ood samples:", counters[OOD])