Datasets:
File size: 3,757 Bytes
fda8a21 5ac24e1 fda8a21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
language:
- code
- en
license: mit
task_categories:
- text-generation
pretty_name: RepoExec-Instruct
viewer: true
---
## Table of Contents
- [Dataset Summary](#dataset-summary)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Usage](#usage)
- [Additional Information](#additional-information)
- - [Other Resources](#other-resources)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** [FSoft-AI4Code/RepoExec](https://github.com/FSoft-AI4Code/RepoExec)
- **Paper:** [RepoExec: Evaluate Code Generation with a Repository-Level Executable Benchmark](https://arxiv.org/html/2406.11927v1)
- **Contact:** [email protected]
- **Website:** https://www.fpt-aicenter.com/ai-residency/
# RepoExec: Evaluate Code Generation with a Repository-Level Executable Benchmark
## Dataset Summary
This source contains the instruction-tuning dataset to fine-tune models in our work.
## Dataset Structure
### Data Instances
```
{
"id": 0,
"prompt": "import base64\nimport random\nimport unicodedata\nimport zlib\nfrom typing import Union\nfrom uuid import uuid4\nfrom ._regex import *\nfrom .errors import InvalidInputError\nfrom .validation import is_snake_case, is_full_string, is_camel_case, is_integer, is_string\n\nclass InvalidInputError(TypeError):\n \"\"\"\n Custom error raised when received object is not a string as expected.\n \"\"\"\n\n def __init__(self, input_data: Any):\n \"\"\"\n :param input_data: Any received object\n \"\"\"\n type_name = type(input_data).__name__\n msg = 'Expected \"str\", received \"{}\"'.format(type_name)\n super().__init__(msg)\n\ndef is_string(obj: Any) -> bool:\n \"\"\"\n Checks if an object is a string.\n\n *Example:*\n\n >>> is_string('foo') # returns true\n >>> is_string(b'foo') # returns false\n\n :param obj: Object to test.\n :return: True if string, false otherwise.\n \"\"\"\n return isinstance(obj, str)\n\ndef reverse(input_string: str) -> str:\n \"\"\"\n Returns the string with its chars reversed.\n\n *Example:*\n\n >>> reverse('hello') # returns 'olleh'\n\n :param input_string: String to revert.\n :type input_string: str\n :return: Reversed string.\n \"\"\"\n",
"docstring":
}
```
### Data Fields
Data fields for inline level:
- **id** (string): the unique id
- **prompt** (string): sequence to fine-tune LM
- **docstring** (string): docstring of the target function. If docstring is not None, instruction template is applied; otherwise raw format or small context is applied.
### Data Splits
The instruction tuning dataset is not split and only contains `data` subset.
## Usage
You can load this dataset using datasets library: ```pip install datasets```
```python
from datasets import load_dataset
# Load full dataset
dataset = load_dataset("Fsoft-AIC/RepoExec-Instruct")
```
## Additional Information
### Other Resources:
- Github: https://github.com/FSoft-AI4Code/RepoExec
- Webpage: https://fsoft-ai4code.github.io/repoexec
- Leaderboard: https://repoexec.github.io
- Paper: https://arxiv.org/html/2406.11927v1
### Licensing Information
MIT License
### Citation Information
```
@article{nam2024repoexec,
title={RepoExec: Evaluate Code Generation with a Repository-Level Executable Benchmark},
author={Hai, Nam Le and Manh, Dung Nguyen and Bui, Nghi DQ},
journal={arXiv preprint arXiv:2406.11927v1},
year={2024}
}
```
### Contributions
This dataset is developed by [FSOFT AI4Code team](https://github.com/FSoft-AI4Code).
|