|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""News headlines and categories dataset.""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import json |
|
|
|
import datasets |
|
|
|
|
|
_DESCRIPTION = """\ |
|
Dataset of single lines of Python code taken from the [CodeSearchNet](https://github.com/github/CodeSearchNet) dataset. |
|
|
|
Context |
|
|
|
This dataset allows checking the validity of Variational-Autoencoder latent spaces by testing what percentage of random/intermediate latent points can be greedily decoded into valid Python code. |
|
|
|
Content |
|
|
|
Each row has a parsable line of source code. |
|
{'text': '{python source code line}'} |
|
|
|
Most lines are < 100 characters while all are under 125 characters. |
|
|
|
Contains 2.6 million lines. |
|
|
|
All code is in parsable into a python3 ast. |
|
|
|
""" |
|
|
|
_CITATION = """\ |
|
@dataset{dataset, |
|
author = {Fraser Greenlee}, |
|
year = {2020}, |
|
month = {12}, |
|
pages = {}, |
|
title = {Python single line dataset.}, |
|
doi = {} |
|
} |
|
""" |
|
|
|
_TRAIN_DOWNLOAD_URL = "https://raw.githubusercontent.com/Fraser-Greenlee/my-huggingface-datasets/master/data/python-lines/train.jsonl" |
|
_TEST_DOWNLOAD_URL = "https://raw.githubusercontent.com/Fraser-Greenlee/my-huggingface-datasets/master/data/python-lines/test.jsonl" |
|
_VALIDATION_DOWNLOAD_URL = "https://raw.githubusercontent.com/Fraser-Greenlee/my-huggingface-datasets/master/data/python-lines/valid.jsonl" |
|
|
|
|
|
class PythonLines(datasets.GeneratorBasedBuilder): |
|
"""Python lines dataset.""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
'text': datasets.Value("string"), |
|
} |
|
), |
|
homepage="https://github.com/Fraser-Greenlee/my-huggingface-datasets", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL) |
|
test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL) |
|
validation_path = dl_manager.download_and_extract(_VALIDATION_DOWNLOAD_URL) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": validation_path}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Generate examples.""" |
|
with open(filepath, encoding="utf-8") as json_lines_file: |
|
data = [] |
|
for line in json_lines_file: |
|
data.append(json.loads(line)) |
|
|
|
for id_, row in enumerate(data): |
|
yield id_, row |
|
|