
By Seaside Studios
For technical support and requests write to:

seasidegamestudios@gmail.com
Twitter of the creator: https://twitter.com/GerardBelenguer

mailto:seasidegamestudios@gmail.com
https://twitter.com/GerardBelenguer


Index
Overview 2
First Steps (Must Read) 3
Render Pipeline And Post Processing Setup 4
Component Features 7
Right Click Create Material 8
Asset Window 9
Textures Setup 11
Custom Sort Axis 15
Saving Prefabs 15
Sprite Atlases 16
How to animate effects 17
Scripting 18
How to Enable/Disable Effects at Runtime 19
Random Seed 20
Scaled Time 21
UI Masking 22
2D Renderer URP Lights 24
Unified Outline 28
Render Material To Image 29
Effects and Properties Breakdown 30
Considerations 40
Running out of Shader Keywords 40
FAQ (Frequently Asked Questions) 41

1



Overview
First of all thanks for downloading this asset! The intention of this asset is
to provide you with an all in one solution to include cool effects to sprites,
UI images effects to your project in the easiest and fastest way possible.

What makes this asset unique is that you choose which effects you desire
and the material will blend and stack all your desired effects appropriately.
So the same material allows you to create a huge variety of effects without
altering the setup of your sprites.

On top of that it offers a very flexible, powerful and easy to learn workflow
that will allow you to enhance your projects visuals in the easiest way
possible.

Link to the youtube playlist that explains how to use this asset:
https://youtube.com/playlist?list=PLKS0HUbkxp-mLfgqHc4Qglb7Maq0ZMG
So

Feel free to contact me over at this email if you have any issue, request or
question. I’m always trying to improve the asset, open to suggestions and
I’ll be more than happy to help you out: seasidegamestudios@gmail.com

Please make sure to drop a review on the Asset Store page if you like
the asset. It helps a ton:
https://assetstore.unity.com/packages/vfx/shaders/all-in-1-sprite-shader-15
6513

Finally a new asset called All In 1 Vfx Toolkit has been released. It's a
spiritual successor to this asset but tailor made for VFX creation.
Get it here with a HUGE DISCOUNT for owning this asset:
https://assetstore.unity.com/packages/vfx/all-in-1-vfx-toolkit-206665

2

https://youtube.com/playlist?list=PLKS0HUbkxp-mLfgqHc4Qglb7Maq0ZMGSo
https://youtube.com/playlist?list=PLKS0HUbkxp-mLfgqHc4Qglb7Maq0ZMGSo
mailto:seasidegamestudios@gmail.com
https://assetstore.unity.com/packages/vfx/shaders/all-in-1-sprite-shader-156513
https://assetstore.unity.com/packages/vfx/shaders/all-in-1-sprite-shader-156513
https://assetstore.unity.com/packages/vfx/all-in-1-vfx-toolkit-206665


First Steps (Must Read)
The asset includes a component that will do all the setup for you. The component is
called “AllIn1Shader”:

When you add it, the component will swap the current material for a new instance of the
AllInOneSpriteShader material. The component also has some features that are
overviewed in the next point.

Here you have a link to a video that gives an overview of the asset in case you prefer a
visual explanation:
https://youtu.be/ThvqkJ5q-gk

But you can also do it the classic way: right clicking the AllInOneSpriteShader and then
going Create->Material. You can then name this material and drag it into the Sprite
Renderer Material slot in the Inspector of the desired Sprite:

The same process can be followed for UI Images, Particle Systems, Tilemap
Renderers, Sprite Shapes and Mesh Renderers.

3

https://youtu.be/ThvqkJ5q-gk


Once the Material is added you’ll see the Material Inspector. You can enable the effects
you want to be displayed by clicking the toggle boxes and change the properties values
usually by using a slider. You can also change these values via scripting (see Scripting
section).

Make sure that “Animated Materials” is checked in the Scene view (in some versions
called “Always Refresh”):

Render Pipeline And Post Processing Setup
The asset will work out of the box in all render pipelines. If you just want to use the
asset it’s ready to go right after import. The following steps are only relevant if you:

4



A. Want to get the exact results seen in the Trailer Demo, screenshots, WebGL
Demo etc…

B. Want to learn how to add Post Processing Bloom that will be responsible to make
bright things glow (needed for effects like Glow and other effects that have
intensity properties to have glowing halos as if they produced light)

C. Want to learn how to use the 2D Renderer URP realtime lighting shader

Setup Steps for A and B - Demos and Post Processing: I’m grouping these 2 since
they need the same steps.

For Built-In pipeline:
1. Install Post Processing package from the Package Manager
2. In Graphics Settings enable HDR in all checkboxes
3. Make sure you allow HDR in you camera
4. Add Post Process Layer and Volume
5. Properly configure them make making it Global and setting the Layer to the same
Layer of the Camera you are using
You can also watch a video about it here:
https://youtu.be/pq5dTygcFVU

URP pipeline steps:
1. Import the “2DRenderer-URP-Package” or “2DRenderer-URP-Package-2021.2+”
Unity Package depending if you are in version 2021.2 or not. Choose the first one if you
are in an older Unity version and the second one if you are in 2021.2 or a later version.
If you want to change the package just delete the 2DRenderer_URP folder and import
the other one.
Once imported the URP demo scenes can be found in the 2DRenderer_URP folder.
DemoOriginalUrp is the one you’ll want to use unless you follow the 2D Renderer setup
steps we’ll see right after.
2. Set Color Space to Gamma in Player Settings, Other Settings, Color Space

Post Processing should be working straight away in the URP Demo scenes but
here you have a setup video just in case:
https://youtu.be/ZJBw7sGG63g (URP Post Processing)

*Unity has been making some changes to the Volumes Post Processing, so
depending on your Unity version things may look too bright and glowy. Feel free

5

https://youtu.be/pq5dTygcFVU
https://youtu.be/ZJBw7sGG63g


to play around with the Bloom effect parameters in the Volumes component of the
Camera (those particular property values in red are pretty good for old versions
of Unity):

Setup Steps for C - 2D URP Renderer for 2D realtime lighting:

1. Follow the setup steps of URP right above
2. Set Color Space to Gamma in Player Settings, Other Settings, Color Space
3. In Graphics Settings set the Scriptable Render Pipeline Settings to “AllIn1UrpAsset”
4. In Quality Settings set the Rendering asset to “AllIn1UrpAsset”
5. Now the DemoLighting demo scene will work and you can see the 2D realtime
lighting
You can also watch these 2 short videos here (they are a bit out of date but it may
help):
https://youtu.be/e7jyq-MXLEo (URP Renderer Setup)
https://youtu.be/ZJBw7sGG63g (URP Post Processing)

6

https://youtu.be/e7jyq-MXLEo
https://youtu.be/ZJBw7sGG63g


Component Features
Once added the component will look like this:

The buttons do the following:
● Deactivate All Effects: Turns off all Effects (both Color and UV). Clicking this

button does not remove previous settings, so if an effect is turned on again, the
old settings remain.

● New Clean Material: It will create a new instance of the AllInOneSpriteShader
material and assign it to the Sprite. Deactivating and resetting all effects and
properties in the process.

● Create New Material With Same Properties: It will create a new instance of the
AllInOneSpriteShader material with the same effects and properties of the
previous one. This is useful when you want to create a material similar to another
one.

● Save Material to Folder: Create a copy of the material with current effects
enabled and specific settings set. Material can be located in the save folder for
reapplication (save path can be changed in the Asset Window). This button must
be clicked prior to making a Prefab of a Gameobject with effects applied.

7



● Apply Material To All Children: Applies the material of the current selected
object to all the objects under its hierarchy. All children renderers will then have
the same effects and properties as the parent.

● Render Material To Image: Renders current Texture + Material to an image
texture. You can read more about this in the Render Material To Image section.

● Change Shader Variant: This dropdown allows you to swap the different
variants of the shader included in the asset. You can learn more about the Scaled
Time, Masked UI and URP 2D Renderer variants in the Scaled Time, UI Masking
and URP 2D Lights sections of this Documentation.

● Sprite Atlas Auto Setup: Use this in case your sprite is contained inside an
atlas. This will add the SetAtlasUvs component for you and will make sure that
the effects get properly drawn on your sprite (See Sprite Atlases section for more
details).

● Remove Sprite Atlas Configuration: Removes SetAtlasUvs component and the
rest of the sprite atlas configuration.

● Remove Component and Material: Removes the component from the
GameObject and sets the Sprite Material back to the Sprite/Default one.

Right Click Create Material
From asset version 3.5 onward you can right click in the Project Window and create a
new Material in that current folder by right clicking and then: Create -> AllIn1Shader
Materials -> Pressing on the shader variant you want to create a material for.

8



Asset Window
Video tutorial here: https://youtu.be/N0IEFVmuFvc

You can access it by going to Window -> AllIn1ShaderWindow.
The Asset Window offers you a bunch of settings options and utilities:

1. Asset Display Image Options: Allows you to choose if the asset component will show
the asset name logo or not. And in case you want the image it to show, you can choose
the color of the image. You can choose between the default grey color of older Unity
versions or the new black color of newer versions

9

https://youtu.be/N0IEFVmuFvc


Just to be clear, this is the image we are talking about:

2. Changing the default Asset Shader: This is the shader that gets added when you add
the asset component to a valid gameobject (a gameobject with a Renderer component
or UI Image). Usually it should be Default or Urp 2D Renderer if you are doing a game
with the new URP 2D Renderer Lights (this last option will only work if the URP package
is imported, see URP 2D Lights section for more info).

3. Material Save Path: As mentioned in the previous section the Asset can save
Materials. By default these materials will be saved into a pre assigned “Materials” folder
under the Asset root folder. But you can change the folder here:

4. Render Material To Image: Here you can change the default save route and the
Rendered Image Texture Scale. Since the output will look slightly less sharp than the
in-engine version you can upscale the output to make it more crisp in case you need to.

10



5. Normal Map Creator: You can change the save route of the Normal Maps used in the
Urp 2D Renderer shader and you can also create Normal Map textures using this
window. You can do so by adding a Target Image, choosing a Normal Strength and
Smoothing values and pressing the Create And Save Normal Map.

6. Gradient Creator: Allows you to create Gradient textures that can then be used with
the asset shader. The most straightforward use for it is the Color Ramp effect. There is
an example in the third row of the Demo called “Custom Gradient” that uses a texture
created with this tool.

Textures Setup
In order to get the effects looking as they should, it's important to know how to import
and set up the textures we’ll be using for our sprites and UI images.

Here you have a link to a video that explains how to setup your textures in case you
prefer a visual explanation:
https://youtu.be/DGzBCGHg8BE

11

https://youtu.be/DGzBCGHg8BE


1. The most important part is having enough room within the sprite shape to show
the effects. In the top of the Scene window you can choose how the scene view
is rendered. If we change from Shaded to ShadedWireframe we’ll be able to see
the sprite rect size:

In the Shaded Wireframe view we can see black lines, that’s the shape of the
mesh where your sprite and effects will be rendered. To get all the effects to
display properly we’ll need more space. Otherwise the effects will get cropped
where the black line ends.

The easiest way of doing so is changing the Mesh Type to Full Rect in the import
settings of the sprite:

12



We should always have plenty of space around the sprite so that all the effects
can get rendered properly like in this picture (red lines show all the available
space where effects can get rendered):

Moreover, if you need even more space you could use the Rect Size effect. This
effect will make the available space for the sprite even bigger. Note that this
effect will only properly work on single image sprites, it won’t work on
spritesheets. And doesn’t work well for UI Images either, please use this effect as
a last resort.

13



2. In a similar fashion if we are using a spritesheet you must import the sprites in
Multiple Sprite Mode (as you always do) and then make sure that when you Slice
your sprites they have some spacing:

Notice how sprites have a generous spacing between them.
Be aware that some effects won’t display correctly unless you set up your
atlas sprites properly, see next section to know how (Sprite Atlases).

3. You’ll see that some effects have a Glow property. In order for these properties to
have the desired effect you need to add Post Processing and Bloom to the Main
Camera of your scene.

If you don’t know how this is done you can follow these videos:
URP: https://youtu.be/ZJBw7sGG63g
Built-in: https://youtu.be/pq5dTygcFVU

4. Most of the time it will be a good idea to set the Wrap Mode of the Import
Settings of the textures you use to Repeat. This will assure a proper result when
using effects that use scrolling textures

14

https://youtu.be/ZJBw7sGG63g
https://youtu.be/pq5dTygcFVU


5. The same exact process applies to UI images

Custom Sort Axis
In 2D games we generally want to sort sprites along the Y axis. So we want to have
objects that are below to render on top of the ones that are higher up.
This can be achieved by playing around with the Sprite Renderer Order in Layer values,
but we can also configure Unity to sort sprites and objects along the Y axis
automatically if we want to:

If you are using URP you can change this option in the Pipeline Renderer asset (if you
set the sorting axis to the Z axis sprites will get sorted by depth, this is used in 2.5D and
3D games):

Saving Prefabs
By default this asset doesn’t save the Material you are using, instead it keeps it as part
of the Scene in order to avoid having too many objects cluttering your project. This
means that by default, when you turn a GameObject with an AllIn1SpriteShader
material into a prefab, the prefab won’t render correctly since it doesn't have a
reference to the Material inside the Project Asset files.

In order to save a Prefab you first need to save its Material. You can do so with the

15



“Save Material to Folder” button that you’ll find on the asset component:

Sprite Atlases
You can also find a video about it here:
https://youtu.be/xzKYMUnmjnQ

By default if you use this tool with a sprite that’s inside of a sprite atlas you’ll see that
the visual results that you obtain when using UV Effects are not the ones that you
expect. This is because the Sprite Renderer knows that it’s a partial image (since it’s
inside an atlas) but the shader doesn’t, which causes unexpected results.

The problem with sprite atlases is that each sprite inside the atlas has an arbitrary UV
range depending on its size. The Sprite Atlas setup normalizes the texture coordinates
from 0 to 1 even though each individual sprite within the atlas has an arbitrary range.

This setup will make UV effects work as you expect in images that are inside Sprite
Atlases. The Wind effect is a great example. Compare how a sprite inside an atlas looks
with the Wind effect when using the Atlas Setup versus when not using it.

With this asset component buttons you can add and remove the Sprite Atlas Setup:

With the Setup button the SetAtlasUvs component will be automatically added:

This will manage everything for us. And in case we want to remove this setup we can
press the second button and everything will go back to normal.

If we are using a sprite that won’t be changing we can leave everything as is after
pressing the Setup button but if we are using an animation that swaps the sprite (a
flipbook) we’ll need to check the Update Every Frame checkbox in the SetAtlasUvs

16

https://youtu.be/xzKYMUnmjnQ


component:

UI Images work the same but have a slight exception: for this to work every sprite inside
the same Atlas must have a different material assigned. This can be achieved in several
ways:

1. Adding the AllIn1SpriteShader component (this will create a fresh new material)
2. Duplicating an existing image gameObject and then pressing the New Clean

Material or New Material with same properties button
3. Duplicating a saved material (Ctrl+D when selected) and assigning this new copy

to the desired Image component

Finally keep in mind that there are 2 effects that don’t really work with this
feature, these are: Rect Size and Polar Coords.

How to animate effects
The custom material inspector properties can be animated through the Animation
window as any other Unity component.

If you don’t know how this is done you can follow this video:
https://youtu.be/aNastuqGBik

Please keep in mind that UI material properties can’t be animated using the Animator,
the reason being that Unity won’t allow you to animate shared material properties. Unity
UI Images materials are always shared, which means that all Images use the exact
same material instance of a particular Image and therefore if a property is changed for
one Image material all the other Images that share material will change too. Since Unity
won’t allow this behavior it doesn’t support using the Animator in UI Material properties.
And unfortunately I can’t do anything about it.

I recommend using an amazing free asset in the store called DoTween to animate the
UI material properties through code or if you prefer you can use the function calls
described in the following section.

Alternatively you can also use this free asset called (Animate UI Materials):
https://assetstore.unity.com/packages/2d/gui/animate-ui-materials-253197

17

https://youtu.be/aNastuqGBik


Also consider that since UI material instances are shared you may want to create a
copy of each material through script on an Awake method:
void Awake()
{

Image uiImage = GetComponent<Image>();
uiImage.material = new Material(uiImage.material);

}

Scripting
If you prefer avoiding animations or want to change properties through code you also
have the possibility.

You can find the property names by hovering the mouse over any property in the
Material Inspector:

To do so you’ll need to use the following Unity functions:
● Material.SetFloat:

https://docs.unity3d.com/ScriptReference/Material.SetFloat.html
● Material.SetColor:

https://docs.unity3d.com/ScriptReference/Material.SetColor.html
● Material.SetTexture:

https://docs.unity3d.com/ScriptReference/Material.SetTexture.html

You can find all property names on
AllIn1SpriteShader/Resources/AllIn1SpriteShader.shader. All properties are located
from line 5 to 225 and can also be found at the Effects and Properties Breakdown

18

https://docs.unity3d.com/ScriptReference/Material.SetFloat.html
https://docs.unity3d.com/ScriptReference/Material.SetColor.html
https://docs.unity3d.com/ScriptReference/Material.SetTexture.html


section.

Here an example code snippet:
Material mat = GetComponent<Renderer>().material;
mat.SetFloat("_Alpha", 1f);
mat.SetColor("_Color", new Color(0.5f, 1f, 0f, 1f));
mat.SetTexture("_MainTex", texture);

*Note that there is an important distinction to be made between a “material” and a
“sharedMaterial” of a Renderer. You shall use “material” if you only want to change a
property of that instance of the material. And “sharedMaterial” if you want to change the
property of all the instances of that material

Finally, there is an exception with materials used by a Masked UI Image where you’ll
need to use “materialForRendering” instead. An example would be:
image.materialForRendering.SetFloat("_FadeAmount", t);

Also consider that if you are trying to change a Material used in a UI component the
material instances will be shared. This means that any change made to an image
material will affect all other instances. To avoid this create a new copy of the material via
script on an Awake method:
void Awake()
{

Image uiImage = GetComponent<Image>();
uiImage.material = new Material(uiImage.material);

}

How to Enable/Disable Effects at Runtime
There are 2 ways of achieving this:

1. [Use this] All effects have a property value combination that makes them look
deactivated (usually by reducing the amount or blend property to 0, but it may
vary depending on the effect). So the most clean way of deactivating and
activating effects is by enabling all the effects you’ll use and then dynamically
changing the property values either by animating the properties or by modifying
the values by script as seen in the previous section.

19



2. [Not recommended way] This other way is less efficient, messier and will
cause sprites to become invisible in the final build if you set a combination of
effects that isn’t included in some other material in your project. So be warned,
use this with caution and test it on the target platform. If sprites disappear at
some point make sure to have some material in your project that includes the
same set of effects than the sprite that isn’t showing.
If you must use this feature I recommend having all the effects you’ll need
enabled when you are in the editor and to disable them in the Start method. This
will prevent any error in the final build.
This method consists on enabling and disabling the shader compilation flags at
runtime, so Unity will compile and replace the shader at runtime. To do so you
first need to have a reference to the material and then use the Enable/Disable
Keyword method like so:

Material mat = GetComponent<Renderer>().material;
…
mat.EnableKeyword("GRADIENT_ON");
mat.DisableKeyword("GRADIENT_ON");
(Keyword names of every effect can be found at the Effects and Properties Breakdown
section)

If you really want to use this feature and you really know what you are doing and how to
prevent errors you can find the effect name by hovering it with the mouse in the Material
Inspector:

Random Seed
Video about it: https://youtu.be/VIXgACEVQDo

There are some effects with a random component (such as flicker, hologram, glitch...).
By default if you have 2 instances of a material that uses these effects they will look the
same and it may look bad in your game. To avoid repetition you can add the

20

https://youtu.be/VIXgACEVQDo


RandomSeed component to the Object that contains the Renderer (Sprite, Tilemap,
Sprite Shape, Particle System, Mesh) or UI Image you want to affect.

Doing this won’t break batching as long as Gpu Instancing is enabled in the Advanced
Configuration Options of the Material Inspector and the Main Texture is set directly in
the Material asset. This means that you’ll need one instance of a material that is
supposed to batch for each different texture you want to use.

Scaled Time
Video about it: https://youtu.be/7_BggIufV-w

The default shader variant of the asset uses the built in Unity “_Time” shader property to
animate some effects. This property is provided by Unity and will work differently
depending on the Unity version you are using.

Unity 2018 or older: “_Time” isn’t scaled, which means that if you pause the game all
animated effects will keep playing. If you want to pause all shader effect animations use

21

https://youtu.be/7_BggIufV-w


the Scale Time shader variant and add the SetGlobalTimeUnity2018.cs script to an
active object of your scene.

Unity 2019.4 or newer: “_Time” is scaled, which means that if you pause the game all
animated effects will pause too. If you want all shader effect animations to keep playing,
use the Scale Time shader variant and add the SetGlobalTimeNew.cs script to an active
object of your scene.

To change the shader variant use the asset component:

UI Masking
Video about it: https://youtu.be/X8mb93B6Xq4

22

https://youtu.be/X8mb93B6Xq4


If you try to use the asset material on a masked UI element such as the ones contained
on a Scroll view you’ll see that the object won’t get masked.

In this image we can see how we have a UI image inside of a Scroll View and it’s not
getting masked (it should only be visible inside the gray area). This happens because
elements that need to be masked have a unique Stencil configuration, this configuration
is not included on the default material since it would bring problems to the regular use
cases.

But you can change the shader variant with the shader component and the Image will
get masked:

23



Sometimes for this to take effect in the scene you’ll need to Save the scene (Ctrl+S).
Same happens when modifying shader properties through the inspector.

Another caveat is that, as already mentioned in the Scripting section above you will
want to use Image.materialForRendering instead of Image.material when scripting UI
Masked UI Images.

*For this to work the Stencil buffer must be enabled. In the Built-In pipeline is
enabled by default in most platforms. In case you are building for Android you
can go to Player Settings, Resolution and Presentation and make sure that the
Stencil isn’t disabled.
In URP you need to enable the stencil in the Pipeline Settings asset:

24



2D Renderer URP Lights
In order to get access to these features please follow the steps mentioned in the Render
Pipeline And Post Processing Setup section of this Documentation.

And here you can find a video showcasing this new feature:
https://youtu.be/uo-oD4NIVO8

The best way of seeing what you can do with these features is to take a look at the URP
demo scenes inside the URP folder. In particular the DemoLighting one.

25

https://youtu.be/uo-oD4NIVO8


If you want to assign a Urp 2D Renderer shader to any particular sprite the easiest way
to do so is by adding the asset component asset and changing the shader variant:

If most of the assets you use will use this variant and you don’t want to manually
change the shader variant every time you can change the default shader variant in the
asset window (Window -> AllIn1ShaderWindow):

You can add a normal map that affects how the sprite is lit in the Material Inspector:

You can create the Normal Map externally or you can use a normal map creator
included in the tool. You can use these 2 methods:
1. When the Urp 2D Renderer shader variant is being used you can automatically

26



create and add the normal map to the sprite but pressing the Create And Add Normal
Map button:

2. You can also use the asset Window to use this feature without needing a
sprite+material+asset component combo (more info about this feature in the Asset
Window section):

27



Keep in mind that the normal maps will only be taken into account if the Use Normal
Map checkbox of the 2D Light is set to true:

To end this section I’d like to mention a very annoying problem/bug that exists
with the URP Volumes post processing Bloom and the 2D Renderer in the Scene
view (everything works perfectly fine in the Game view and in the final build). If
you have Bloom active you may get very annoying crazy flickering colors when
you move the Scene camera. I haven’t found any solution and I hope that Unity
fixes it soon. For now the best solution is to disable Post Processing in the scene
tab:

28



Unified Outline
A component was created (All1CreateUnifiedOutline) to automate the sprite duplication
task that is usually used to create a Unified Outline. This effect is achieved by adding an
additional sprite behind each original sprite we want to outline:

(Example available in the Demo scene)

With the All1CreateUnifiedOutline component we can do that automatically by adding it
to the parent gameobject of the hierarchy we want to outline:

To use it we need to add an Outline Material to the first slot. We can do so by saving a
material with the desired outline (see Component Features if you don’t know how). The
Outline Parent Transform is optional. If added, all the new outline gameobjects will be
placed under this transform, otherwise the duplicates will be placed under the
gameobject they’ve been duplicated from.

29



The next 2 properties are used to set the order in layer and sorting layer of the outline
sprites. We’ll want to place them behind the original sprite. But it’s up to you what order
in layer and sorting layer they use.

To create the Unified Outline press the Create Unified Outline checkbox. This will set up
everything for you and will then delete the component.

Render Material To Image

If you press the Render Material To Image the current Texture + Material of the current
Gameobject will get rendered into a texture that you’ll then be able to save wherever
you want:

In the asset window you can change the default save route and the Rendered Image
Texture Scale. Since the output will look slightly less sharp than the in-engine version
you can upscale the output to make it more crisp in case you need to.

This feature is useful to offload some work from the gpu. By baking the result into a
texture it means that the gpu won’t need to compute all effects every single frame. In

30



any case please keep in mind that the asset is made with efficiency in mind, even in low
end devices. This is just one more tool at your disposal. Please don’t try to optimize
early by swapping out all Materials by a rendered image. Only use this for performance
reasons after running into performance problems (you most likely never will, even in low
end devices).

Where this feature really shines is when doing complex setups where you pre-render a
certain image for some VFX or to pre-render a texture that you can then modify with the
asset shader. This feature allows you to stack and re-apply the asset effects recursively
as many times as you need.

Effects and Properties Breakdown
The AllIn1SpriteShader has a custom Material Inspector that allows you to activate and
deactivate effects. When an effect is activated it displays it’s properties so that they can
be modified:

31



This is the custom Material Inspector. In this image we can see that the Fade effect is
activated and all its properties.

Also note that there is an “R” button next to each property. This button will reset the
property to its default value set in the shader. Feel free to change these default values
in the shader if you need to.

Keep in mind that there’s an example of every effect on the Demo scene.

Down below all the shader properties are explained. In between [] (ex:[GLOW_ON]) you
can find the shader keyword name of each effect (see How to Enable/Disable Effects at
Runtime section to see how to use it). In between () (ex: _MainTex) you can find the
shader property names in case you want to modify them in a script (see Scripting
section).

● General Properties
○ Main Texture (_MainTex): Main Texture, supports Tiling and Offset
○ Main Color (_Color): The Tint of the the Main Texture
○ General Alpha (_Alpha): Transparency of the end result

● Color Effects
1. Glow (Needs Post Processing Bloom to work as intended) [GLOW_ON]

a. Glow Color (_GlowColor): Color of the Glow
b. Glow Intensity (_Glow): Indicates how intensely the glow color will glow
c. Global Glow(_GlowGlobal): Indicates how much the sprite will glow. It will

use the sprite color instead of the glow color
d. Glow Texture used? (_GlowTexUsed): When checked shows the following

property
e. Glow Texture (_GlowTex): Acts as a mask. The glow will only be applied

where the alpha of this texture is greater than 0
2. Fade [FADE_ON]

a. Fade Texture (_FadeTex): Maps how the fade will be made. The fade will
be made from black to white

b. Fade Amount (_FadeAmount): How much fade to apply. 0 is no fading and
1 is completely faded

c. Fade Burn Width (_FadeBurnWidth): Size of the burned edge. Can be set
to 0 to have no burned edge

d. Fade Burn Smooth Transition (_FadeBurnTransition): How sharp the
burned edge is

32



e. Fade Burn Color (_FadeBurnColor): Tint of the burned edge
f. Fade Burn Texture (_FadeBurnTex): Texture of the burned edge
g. Fade Burn Glow (_FadeBurnGlow): How much the burned edge glows

(needs Bloom in the scene)
3. Outline (when the width is large it doesn’t look good) [OUTBASE_ON]

a. Outline Base Color (_OutlineColor): Tint of outline color
b. Outline Base Alpha (_OutlineAlpha): Transparency of the outline
c. Outline Base Glow (_OutlineGlow): How much the outline glows (needs

Bloom in the scene)
d. Outline Base High Resolution (_Outline8Directions): When toggled the

outline has double the resolution and looks smoother on corners. It’s more
expensive computation wise

e. Outline Base is Pixel Perfect (_OutlineIsPixel): When toggled the outline
width increases pixel by pixel (ideal for pixel art games)

f. Outline Width (_OutlineWidth/_OutlinePixelWidth): How thick the outline is
g. Outline uses texture (_OutlineTex): Toggles if the outline has a texture

overlay or not (is affected by Outline Base Color)
h. Outline Texture Scroll Speed (_OutlineTexXSpeed / _OutlineTexYSpeed):

Scroll speed of the outline texture in the X axis and Y axis
i. Outline Texture is Greyscale (_OutlineTexGrey): When toggled the outline

texture will be greyscaled
j. Outline uses distortion (_OutlineDistortToggle): When toggled distortion

will be applied to the outline and the outline distortion properties will be
shown

k. Outline Distortion Texture (_OutlineDistortTex): Noise texture that
determines how the distortion is done

l. Outline Distortion Amount (_OutlineDistortAmount): How much is the
outline distorted following the distortion texture

m. Outline Distortion Scroll Speed (_OutlineDistortTexXSpeed /
_OutlineDistortTexYSpeed): Scroll speed of the distortion texture in the X
axis and Y axis

4. Alpha Outline [ALPHAOUTLINE_ON]:
a. Color (_AlphaOutlineColor): Color of the outline
b. Outline Glow (_AlphaOutlineGlow): Glow intensity of the outline
c. Power (_AlphaOutlinePower): In a way this works like the outline width
d. Min Alpha (_AlphaOutlineMinAlpha): Play around with this property to

handle where the outline is formed
e. Blend (_AlphaOutlineBlend): 0 means the effect will be invisible. 1 fully

visible, everything in between is interpolated

33



5. Inner Outline (places outlines over the Main Texture) [INNEROUTLINE_ON]
a. Inner Outline Color (_InnerOutlineColor): Color of the Inner Outline
b. Inner Outline Thickness (_InnerOutlineThickness): How thick the Inner

Outline is
c. Inner Outline Alpha (_InnerOutlineAlpha): How transparent the Inner

Outline is
d. Inner Outline Glow (_InnerOutlineGlow): How much the Inner Outline

glows (needs Bloom in the scene)
6. Gradient [GRADIENT_ON]

a. Radial gradient?: When it’s not checked it will use this regular linear
gradient

b. 2 Color Gradient?: When enabled limits the amount colors in the gradient
to 2 (instead of 4)

c. Gradient Blend (_GradBlend): How much of the gradient we show. 0
means the gradient will be fully transparent and 1 means that it will be fully
visible

d. Gradient Colors (_GradTopLeftCol /_GradTopRightCol / _GradBotLeftCol /
_GradBotRightCol in order of appearance): The color of each corner of the
gradient. Colors will be automatically blended together

e. Boost parameters (_GradBoostX and _GradBoostY): Biases the gradient
in the X and Y axis respectively

f. Radial Gradient [RADIALGRADIENT_ON]:
g. Radial gradient?: When checked it will use this radial gradient
h. Top Color (_GradTopLeftCol): The color in the outer part of the radius
i. Bot Color (_GradBotLeftCol): The color in the inner part of the radius
j. Boost X (_GradBoostX): Biases the gradient towards the Top or Bot color

depending on its value
7. Color Swap (needs a color swap texture to work) [COLORSWAP_ON]

a. Color Swap Texture (_ColorSwapTex): This texture must contain pure red,
blue and green sections. This sections will then be recolored with
whatever color we choose in the following properties

b. Color Swap Red Channel (_ColorSwapRed): New color of the red parts of
the Color Swap texture

c. Color Swap Red Luminosity (_ColorSwapRedLuminosity): How bright the
Red Channel Color will be

d. The green and blue properties work like the red channel properties
e. Color Swap Blend (_ColorSwapBlend): Allows to fade out the effect. 1 is

fully visible, 0 is invisible

34



8. Hue Shift [HSV_ON]
a. Hue Shift (_HsvShift): How much the colors will be shifted
b. Hue Shift Saturation (_HsvSaturation): Saturation of the hue shift result
c. Hue Shift Bright (_HsvBright): Brightness of the hue shift result

9. Change 1 Color [CHANGECOLOR_ON]
a. Tolerance (_ColorChangeTolerance): How similar to the Color to Change

we need to be in order to change to the new color
b. Color to Change (_ColorChangeTarget): This is the color that the shader

will look for. The shader will change the pixels that are similar to this color
by the New Color

c. New Color (_ColorChangeNewCol): The result color of the pixels that are
similar to Color to change

d. Use Color 2 and 3: Enables more color swap slots that work just like the
default one

10.Color Ramp [COLORRAMP_ON]
a. Color Ramp Texture (_ColorRampTex): This texture will be the new color

palette of the sprite
b. Color Ramp Luminosity (_ColorRampLuminosity): Extra of luminosity used

to shift the color palette to where you want
c. Color Ramp Affects Outline (_ColorRampOutline): When checked the

color ramp will also affect the outline
d. Color Ramp Blend (_ColorRampBlend): Allows to fade out the effect. 1 is

fully visible, 0 is invisible
11. Hit Effect [HITEFFECT_ON]

a. Hit Effect Color (_HitEffectColor): The tint of the effect
b. Hit Effect Glow (_HitEffectGlow): Glow of the effect. Needs Bloom in the

scene
c. Hit Effect Blend (_HitEffectBlend): How much of the effect is shown. When

set to 0 it’s not shown, when set to 1 it shows fully. This is meant to be
animated to get cool looking results

12.Negative [NEGATIVE_ON]
a. Negative Amount (_NegativeAmount): How much of the negative effect we

want to show
13.Pixelate [PIXELATE_ON]

a. Pixelate size (_PixelateSize): The lower the number the more pixelated
the sprite gets. This effect looks bad when combined with distortions

14.Greyscale [GREYSCALE_ON]
a. Greyscale Luminosity (_GreyscaleLuminosity): Make sprite whiter

35



b. Greyscale Affects Outline (_GreyscaleOutline): When checked the
greyscale will also affect the outline

c. Greyscale Tint Color (_GreyscaleTintColor): Tint of the greyscale
d. Greyscale Blend (_Greyscale Blend): Allows to fade out the effect. 1 is

fully visible, 0 is invisible
15.Posterize [POSTERIZE_ON]

a. Posterize Number of Colors (_PosterizeNumColors): The higher the
number the more different colors the sprite will display

b. Posterize Amount (_PosterizeGamma): The higher the number the more
different the posterize colors will be

c. Posterize Affects Outline (_PosterizeOutline): When checked the posterize
will also affect the outline

16.Blur (won’t affect the outline) [BLUR_ON]
a. Blur Intensity (_BlurIntensity): How much the sprite is blurred
b. Blur is low res (_BlurHD): When active an alternative and less expensive

(computation wise) blur version is used
17.Motion Blur [MOTIONBLUR_ON]

a. Motion Blur Angle (_MotionBlurAngle): The direction of the motion blur
b. Motion Blur Distance (_MotionBlurDist): The amount of motion blur

18.Ghost [GHOST_ON]
a. Ghost Color Boost (_GhostColorBoost): How white the ghost effect gets
b. Ghost Transparency (_GhostTransparency): How transparent the effect

gets
c. GhostBlend (_Ghost Blend): Allows to fade out the effect. 1 is fully visible,

0 is invisible
19.Hologram [HOLOGRAM_ON]

a. Hologram Stripes Amount (_HologramStripesAmount): How much uv
space does the hologram stripes take

b. Hologram Unchanged Amount (_HologramUnmodAmount): How much uv
space does the unchanged parts take. These parts will be placed in
between the stripes

c. Hologram Stripes Speed (_HologramStripesSpeed): How fast the stripes
scroll

d. Hologram Min Alpha (_HologramMinAlpha): The minimum alpha of the
stripes parts. The stripe parts will fade the alpha from this number to max
alpha. This can be used to set any alpha gradient

e. Hologram Max Alpha (_HologramMaxAlpha): The maximum alpha of the
stripes parts. The end value of the alpha gradient. If it’s value it’s bigger
than 1 it will make the stripe part glow

36



f. Hologram Stripe Color (_HologramStripeColor): Tint of the hologram stripe
g. Hologram Blend (_Hologram Blend): Allows to fade out the effect. 1 is fully

visible, 0 is invisible
20.Chromatic Aberration [CHROMABERR_ON]

a. ChromaticAberr Amount (_ChromAberrAmount): How visible the effect is
b. ChromaticAberr Alpha (_ChromAberrAlpha): How transparent the effect is

21.Glitch [GLITCH_ON]
a. Glitch Amount (_GlitchAmount): The higher the number, the more intense

the effect gets
b. Glitch Size (_GlitchSize): The higher the number, the smaller the glitch

squares get
22.Flicker [FLICKER_ON]

a. Flicker Percent (_FlickerPercent): The percentage of time the sprite is
invisible (from 0 to 1)

b. Flicker Frequency (_FlickerFreq): How often does the flicker happen
c. Flicker Alpha (_FlickerAlpha): How transparent the sprite is when it flickers

23.Shadow [SHADOW_ON]
a. Shadow X Axis (_ShadowX): Shadow position offset on the X axis
b. Shadow Y Axis (_ShadowY): Shadow position offset on the Y axis
c. Shadow Alpha (_ShadowAlpha): Transparency of the shadow
d. Shadow Color (_ShadowColor): Tint of the shadow

24.Shine [SHINE_ON]
a. Shine Mask (_ShineMask): None transparent parts of this mask texture

will allow the shine to show
b. Shine Color (_ShineColor): Color tint of the shine effect
c. Shine Location (_ShineLocation): Decides the position of the shine line.

0.5 is the center. 0 is one end and 1 is the other end. Animate this value to
get a nice scrolling shine effect

d. Shine Rotate: Rotation of the shine line in radians
e. Shine Width (_ShineWidth): How wide the shine line is
f. Shine Glow (_ShineGlow): How much does the shine line glow (benefits

from post processing Bloom)
25.Contrast & Brightness [CONTRAST_ON]

a. Contrast (_Contrast): Contrast Amount (1 is default contrast)
b. Brightness (_Brightness): Extra brightness

26.Overlay [_OVERLAY_ON]
a. The “Is overlay multiplicative?” [OVERLAYMULT_ON] toggle allows you to

swap between multiplicative and additive mode. Additive just brightens the

37



image by adding color, while multiplicative will darken it and fade it
depending on the overlay texture alpha

b. Overlay Texture (_OverlayTex): The texture that we will overlay
c. Overlay Color (_OverlayColor): The tint of the overlay texture
d. Overlay Glow (_OverlayGlow): The glow of the overlay texture
e. Overlay Blend (_OverlayBlend): Allows to fade out the effect. 1 is fully

visible, 0 is invisible
f. Texture X Scroll Speed (_OverlayTextureScrollXSpeed): Scrolling speed

on the X axis
g. Texture Y Scroll Speed (_OverlayTextureScrollYSpeed): Scrolling speed

on the Y axis
27.Alpha Cutoff [ALPHACUTOFF_ON]

a. Alpha cutoff value (_AlphaCutoffValue): Pixels that are more transparent
than this value are not drawn. This is useful to make more cartoon looking
effects and to discard unwanted transparencies from certain effects
(avoids alpha overdraw)

28.Alpha Round [ALPHAROUND_ON]
a. Round Threshold (_AlphaRoundThreshold): Rounds the alpha value

depending on this threshold. The values above this value turn into 1 and
the ones below into 0

● UV Effects
29.Hand Drawn [DOODLE_ON]

a. Hand Drawn Amount (_HandDrawnAmount): How much of a distortion we
apply to make it look hand drawn frame a frame

b. Hand Drawn Speed (_HandDrawnSpeed): How often we distort the sprite
30.Grass Movement / Wind [WIND_ON]

a. Grass Speed (_GrassSpeed): How fast it moves from side to side
b. Bend Amount (_GrassWind): How much the sprite bends
c. Radial Bend (_GrassRadialBend): How much the sprite twists. The top

part of the sprite will twist with the wind the higher this number is
d. Grass is manually animated (_GrassManualToggle): When checked the

sprite won’t move on its own (useful if you want a sprite to interact with the
player)

e. Grass manual anim (_GrassManualAnim): If the previous property is
checked this property dictates how the sprite bends. -1 means fully bent to
the left and 1 fully bent to the right

31.Wave [WAVEUV_ON]
a. Wave Amount (_WaveAmount): How many waves we make

38



b. Wave speed (_WaveSpeed): How fast the wave scrolls across the sprite
c. Wave Strength (_WaveStrength): How much the wave affects the sprite
d. Wave X Axis (_WaveX): Position of the wave origin on the X axis (0 is left

1 is right)
e. Wave Y Axis (_WaveY): Position of the wave origin on the Y axis (0 is

bottom 1 is top)
32.Round Wave [ROUNDWAVEUV_ON]

a. Round Wave Strength (_RoundWaveStrength): How much the wave
affects the sprite

b. Round Wave Speed (_RoundWaveSpeed): How fast the wave scrolls
across the sprite

33.Rect Size [RECTSIZE_ON]
a. Rect Size (_RectSize): Size of the mesh where the sprite is drawn. Set

Scene to “Shaded Wireframe” shading mode to see the mesh shape
34.Offset [OFFSETUV_ON]

a. Offset X axis (_OffsetUvX): Offset of the sprite on the X axis
b. Offset Y axis (_OffsetUvY): Offset of the sprite on the Y axis

35.Clipping (useful for sliders) [CLIPPING_ON]
a. Clipping Left (_ClipUvLeft): How much of the image we clip from left to

right
b. Clipping Right (_ClipUvRight): How much of the image we clip from right

to left
c. Clipping Up (_ClipUvUp): How much of the image we clip from up to down
d. Clipping Down (_ClipUvDown): How much of the image we clip from down

to up
36.Radial Clipping [RADIALCLIPPING_ON]

a. Radial Clip Angle (_RadialClipAngle): In degrees, where the radial clipping
starts

b. Radial Clip (_RadialClip): How many degrees we clip. From left to right
c. Radial Clip 2 (_RadialClip2): How many degrees we clip. From right to left

37.Texture Scroll [TEXTURESCROLL_ON]
a. Texture Scroll Speed X (_TextureScrollXSpeed): Scrolling speed on the X

axis
b. Texture Scroll Speed Y (_TextureScrollYSpeed): Scrolling speed on the Y

axis
38.Zoom [ZOOMUV_ON]

a. Zoom Amount (_ZoomUvAmount): How much the sprite is zoomed
39.Distortion [DISTORT_ON]

39



a. Distortion Texture (_DistortTex):Noise texture that determines how the
distortion is done

b. Distortion Amount (_DistortAmount): How much the image is distorted
following the texture pattern

c. Distortion scroll speed (_DistortTexXSpeed and _DistortTexYSpeed):
Scroll speed of the distortion texture in the X axis and Y axis

40.Warp [WARP_ON]
a. Warp Strength (_WarpStrength): Determines the displacement amount
b. Warp Speed (_WarpSpeed): How often the displacement happens
c. Warp Scale (_WarpScale): The lower the scale the more tiled the effect

will look
41.Twist [TWISTUV_ON]

a. Twist Amount (_TwistUvAmount): How much is the sprite twisted
b. Twist Pos X Axis (_TwistUvPosX): Position of the center of the twist on the

X axis (0 is left and 1 is right)
c. Twist Pos Y Axis (_TwistUvPosY): Position of the center of the twist on the

Y axis (0 is bottom and 1 is top)
d. Twist Radius (_TwistUvRadius): The radius of the twist effect

42.Rotate [ROTATEUV_ON]
a. Rotate Angle (_RotateUvAmount): Indicates in radians the angle of

rotation of the sprite texture
43.Polar Coordinates [POLARUV_ON]

a. Transforms the uv coordinates into polar coordinates (this effect looks
goods with tiling on the main texture + texture scrolling)

44.Fish Eye [FISHEYE_ON]
a. Fish Eye Amount (_FishEyeUvAmount): How much fish eye distortion we

want to apply
45.Pinch [PINCH_ON]

a. Pinch Amount (_PinchUvAmount): How much pinch effect we want to
apply

46.Shake [SHAKEUV_ON]
a. Shake Speed (_ShakeUvSpeed): How fast it shakes
b. Shake X Multiplier (_ShakeUvX): The higher the value the more it will

move on the X axis while shaking
c. Shake Y Multiplier (_ShakeUvY): The higher the value the more it will

move on the Y axis while shaking

● Lighting Properties (Urp 2D Renderer shader)

40



a. Lighting Mask: A greyscale texture that indicates where the sprite should
be affected by light. White means affected by light and black means unlit

b. Lit Amount: How lit the sprite is. 1 is fully lit and 0 is not affected by light
c. Normal Map: Normal map texture, affects how the sprite is lit
d. Normal Strength: The higher this value gets the more pronounced the

normal map effect gets (very high values tend to look bad)

Considerations
The shader that the material uses compilations flags to enable and disable the code of
the different effects. So only the effects that you enable will be taken into account by the
GPU and therefore only those parts will be computed.
The shader code is also fast, uses as little memory as possible and has no conditionals.
That being said, having all these properties in the shader has a slight GPU overhead.
But there’s nothing to worry about unless your game displays a huge amount of different
materials at the same time since Unity will batch instances of the same material and
sprite into a single draw call.

Running out of Shader Keywords
If you are using other assets or if you’ve written some complex shaders yourself you
may run out of shader Keywords. Unity has 256 possible global Keywords for shaders,
Unity itself takes around 60 of them, so the user has around 190 available Keywords.
This asset uses many Keywords, so running out of them may be a possibility if you are
using other assets.

So what’s the solution? Since Unity 2019.1 Unity has included local Keywords. This
asset is prepared to work with any Unity version and that's why these local Keywords
aren’t used. But if you are on Unity 2019.1 onward this is what you can do:

1. Go to: AllIn1SpriteShader/Resources
2. There you'll see the Default version, the UI Mask version and the Unscaled Time

version

41



3. Open all of them or just the Default one if you don't use the others
4. Change all shader_feature for shader_feature_local (in visual studio ctrl+f will

open the search and replace bar)

*Unity will only accept 64 local keywords (shader_feature_local), with new
updates and features the shader has slightly surpassed this number. You will
need to leave out a few keywords as global keywords (shader_feature). Keep in
mind that you will only run out of keywords if you have other assets with big
shaders in your project and that in any case you can just replace the keywords on
those assets to be local too.

FAQ (Frequently Asked Questions)
Before reaching out to the support email please take a look at the following questions
and answers.

-Effects don’t show up in the final device build. How can I fix it?
Make sure you are not using material.Enable/DisableKeyword as mentioned in the “How
to Enable/Disable Effects at Runtime” section of this Documentation document.

-A UI element is not showing up in a final device build, what should I do?
You are probably using Post Processing and that’s overriding the Depth Buffer. To solve
it, set the ZTest Mode in Advanced Configuration to Always. You can do that in the
Material Custom Inspector.

-Is it mandatory to use a certain Color Space in the Project?
Of course not, you are free to use whatever Color Space you want. Gamma is
recommended to get the same exact results shown in the Demo and asset promo
material.

-Why isn’t a UI Material getting masked?
You should use the UI Mask shader variant instead.

-How can I make sure that a Material keeps being animated when the game is
paused?
Use the Scaled Time shader variant and have an active object with the
“SetGlobalTimeNew.cs” component attached to it.

42


