Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -33,7 +33,12 @@ and the roles played on them by the biological entities.
|
|
| 33 |
Each entity is linked to their correspondent ontology, allowing
|
| 34 |
for entity disambiguation and NEL.
|
| 35 |
|
|
|
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
## Dataset Description
|
| 38 |
- **Homepage:** https://sourcedata.embo.org
|
| 39 |
- **Repository:** https://github.com/source-data/soda-data
|
|
@@ -73,23 +78,46 @@ The text in the dataset is English.
|
|
| 73 |
- `words`: `list` of `strings` text tokenized into words.
|
| 74 |
- `panel_id`: ID of the panel to which the example belongs to in the SourceData database.
|
| 75 |
- `label_ids`:
|
| 76 |
-
- `entity_types`: `list` of `strings` for the IOB2 tags for entity type; possible value in `["O", "I-SMALL_MOLECULE", "B-SMALL_MOLECULE", "I-GENEPROD", "B-GENEPROD", "I-SUBCELLULAR", "B-SUBCELLULAR", "I-
|
| 77 |
-
- `
|
| 78 |
-
- `boring`: `list` of `strings` for IOB2 tags for entities unrelated to causal design; values in `["O", "I-BORING", "B-BORING"]`
|
| 79 |
- `panel_start`: `list` of `strings` for IOB2 tags `["O", "B-PANEL_START"]`
|
| 80 |
-
- `
|
| 81 |
-
|
| 82 |
### Data Splits
|
| 83 |
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
## Dataset Creation
|
| 95 |
|
|
|
|
| 33 |
Each entity is linked to their correspondent ontology, allowing
|
| 34 |
for entity disambiguation and NEL.
|
| 35 |
|
| 36 |
+
## Dataset usage
|
| 37 |
|
| 38 |
+
```python
|
| 39 |
+
from datasets import load_dataset
|
| 40 |
+
ds = load_dataset("EMBO/SourceData", "NER", version="1.0.0")
|
| 41 |
+
```
|
| 42 |
## Dataset Description
|
| 43 |
- **Homepage:** https://sourcedata.embo.org
|
| 44 |
- **Repository:** https://github.com/source-data/soda-data
|
|
|
|
| 78 |
- `words`: `list` of `strings` text tokenized into words.
|
| 79 |
- `panel_id`: ID of the panel to which the example belongs to in the SourceData database.
|
| 80 |
- `label_ids`:
|
| 81 |
+
- `entity_types`: `list` of `strings` for the IOB2 tags for entity type; possible value in `["O", "I-SMALL_MOLECULE", "B-SMALL_MOLECULE", "I-GENEPROD", "B-GENEPROD", "I-SUBCELLULAR", "B-SUBCELLULAR", "I-CELL_LINE", "B-CELL_LINE", "I-CELL_TYPE", "B-CELL_TYPE", "I-TISSUE", "B-TISSUE", "I-ORGANISM", "B-ORGANISM", "I-EXP_ASSAY", "B-EXP_ASSAY"]`
|
| 82 |
+
- `roles`: `list` of `strings` for the IOB2 tags for experimental roles; values in `["O", "I-CONTROLLED_VAR", "B-CONTROLLED_VAR", "I-MEASURED_VAR", "B-MEASURED_VAR"]`
|
|
|
|
| 83 |
- `panel_start`: `list` of `strings` for IOB2 tags `["O", "B-PANEL_START"]`
|
| 84 |
+
- `multi roles`: There are two different label sets. `labels` is like in `roles`. `is_category` tags `GENEPROD` and `SMALL_MOLECULE`.
|
|
|
|
| 85 |
### Data Splits
|
| 86 |
|
| 87 |
+
* NER and ROLES
|
| 88 |
+
```
|
| 89 |
+
DatasetDict({
|
| 90 |
+
train: Dataset({
|
| 91 |
+
features: ['words', 'labels', 'tag_mask', 'text'],
|
| 92 |
+
num_rows: 55250
|
| 93 |
+
})
|
| 94 |
+
test: Dataset({
|
| 95 |
+
features: ['words', 'labels', 'tag_mask', 'text'],
|
| 96 |
+
num_rows: 6844
|
| 97 |
+
})
|
| 98 |
+
validation: Dataset({
|
| 99 |
+
features: ['words', 'labels', 'tag_mask', 'text'],
|
| 100 |
+
num_rows: 7951
|
| 101 |
+
})
|
| 102 |
+
})
|
| 103 |
+
```
|
| 104 |
+
* PANELIZATION
|
| 105 |
+
```
|
| 106 |
+
DatasetDict({
|
| 107 |
+
train: Dataset({
|
| 108 |
+
features: ['words', 'labels', 'tag_mask'],
|
| 109 |
+
num_rows: 14655
|
| 110 |
+
})
|
| 111 |
+
test: Dataset({
|
| 112 |
+
features: ['words', 'labels', 'tag_mask'],
|
| 113 |
+
num_rows: 1871
|
| 114 |
+
})
|
| 115 |
+
validation: Dataset({
|
| 116 |
+
features: ['words', 'labels', 'tag_mask'],
|
| 117 |
+
num_rows: 2088
|
| 118 |
+
})
|
| 119 |
+
})
|
| 120 |
+
```
|
| 121 |
|
| 122 |
## Dataset Creation
|
| 123 |
|