|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from __future__ import absolute_import, division, print_function | 
					
						
						|  |  | 
					
						
						|  | import json | 
					
						
						|  | import datasets | 
					
						
						|  |  | 
					
						
						|  | _BASE_URL = "https://huggingface.co/datasets/EMBO/SourceData/blob/main/" | 
					
						
						|  |  | 
					
						
						|  | class SourceData(datasets.GeneratorBasedBuilder): | 
					
						
						|  | """SourceDataNLP provides datasets to train NLP tasks in cell and molecular biology.""" | 
					
						
						|  |  | 
					
						
						|  | _NER_LABEL_NAMES = [ | 
					
						
						|  | "O", | 
					
						
						|  | "B-SMALL_MOLECULE", | 
					
						
						|  | "I-SMALL_MOLECULE", | 
					
						
						|  | "B-GENEPROD", | 
					
						
						|  | "I-GENEPROD", | 
					
						
						|  | "B-SUBCELLULAR", | 
					
						
						|  | "I-SUBCELLULAR", | 
					
						
						|  | "B-CELL_TYPE", | 
					
						
						|  | "I-CELL_TYPE", | 
					
						
						|  | "B-TISSUE", | 
					
						
						|  | "I-TISSUE", | 
					
						
						|  | "B-ORGANISM", | 
					
						
						|  | "I-ORGANISM", | 
					
						
						|  | "B-EXP_ASSAY", | 
					
						
						|  | "I-EXP_ASSAY", | 
					
						
						|  | "B-DISEASE", | 
					
						
						|  | "I-DISEASE", | 
					
						
						|  | "B-CELL_LINE", | 
					
						
						|  | "I-CELL_LINE" | 
					
						
						|  | ] | 
					
						
						|  | _SEMANTIC_ROLES =  ["O", "B-CONTROLLED_VAR", "I-CONTROLLED_VAR", "B-MEASURED_VAR", "I-MEASURED_VAR"] | 
					
						
						|  | _PANEL_START_NAMES = ["O", "B-PANEL_START", "I-PANEL_START"] | 
					
						
						|  | _ROLES_MULTI = ["O", "GENEPROD", "SMALL_MOLECULE"] | 
					
						
						|  |  | 
					
						
						|  | _CITATION = """\ | 
					
						
						|  | @Unpublished{ | 
					
						
						|  | huggingface: dataset, | 
					
						
						|  | title = {SourceData NLP}, | 
					
						
						|  | authors={Thomas Lemberger & Jorge Abreu-Vicente, EMBO}, | 
					
						
						|  | year={2023} | 
					
						
						|  | } | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _DESCRIPTION = """\ | 
					
						
						|  | This dataset is based on the SourceData database and is intented to facilitate training of NLP tasks in the cell and molecualr biology domain. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _HOMEPAGE = "https://huggingface.co/datasets/EMBO/SourceData" | 
					
						
						|  |  | 
					
						
						|  | _LICENSE = "CC-BY 4.0" | 
					
						
						|  |  | 
					
						
						|  | DEFAULT_CONFIG_NAME = "NER" | 
					
						
						|  |  | 
					
						
						|  | def _info(self): | 
					
						
						|  | self._URLS = { | 
					
						
						|  | "NER": f"{_BASE_URL}token_classification/v_{self.config.version}/ner/", | 
					
						
						|  | "PANELIZATION": f"{_BASE_URL}token_classification/v_{self.config.version}/panelization/", | 
					
						
						|  | "ROLES_GP": f"{_BASE_URL}token_classification/v_{self.config.version}/roles_gene/", | 
					
						
						|  | "ROLES_SM": f"{_BASE_URL}token_classification/v_{self.config.version}/roles_small_mol/", | 
					
						
						|  | "ROLES_MULTI": f"{_BASE_URL}token_classification/v_{self.config.version}/roles_multi/", | 
					
						
						|  | } | 
					
						
						|  | self.BUILDER_CONFIGS = [ | 
					
						
						|  | datasets.BuilderConfig(name="NER", version=self.config.version, description="Dataset for named-entity recognition."), | 
					
						
						|  | datasets.BuilderConfig(name="PANELIZATION", version=self.config.version, description="Dataset to separate figure captions into panels."), | 
					
						
						|  | datasets.BuilderConfig(name="ROLES_GP", version=self.config.version, description="Dataset for semantic roles of gene products."), | 
					
						
						|  | datasets.BuilderConfig(name="ROLES_SM", version=self.config.version, description="Dataset for semantic roles of small molecules."), | 
					
						
						|  | datasets.BuilderConfig(name="ROLES_MULTI", version=self.config.version, description="Dataset to train roles. ROLES_GP and ROLES_SM at once."), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | if self.config.name == "NER": | 
					
						
						|  | features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "words": datasets.Sequence(feature=datasets.Value("string")), | 
					
						
						|  | "labels": datasets.Sequence( | 
					
						
						|  | feature=datasets.ClassLabel(num_classes=len(self._NER_LABEL_NAMES), | 
					
						
						|  | names=self._NER_LABEL_NAMES) | 
					
						
						|  | ), | 
					
						
						|  | "is_category": datasets.Sequence(feature=datasets.Value("int8")), | 
					
						
						|  | "text": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | elif self.config.name == "ROLES_GP": | 
					
						
						|  | features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "words": datasets.Sequence(feature=datasets.Value("string")), | 
					
						
						|  | "labels": datasets.Sequence( | 
					
						
						|  | feature=datasets.ClassLabel( | 
					
						
						|  | num_classes=len(self._SEMANTIC_ROLES), | 
					
						
						|  | names=self._SEMANTIC_ROLES | 
					
						
						|  | ) | 
					
						
						|  | ), | 
					
						
						|  | "is_category": datasets.Sequence(feature=datasets.Value("int8")), | 
					
						
						|  | "text": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | elif self.config.name == "ROLES_SM": | 
					
						
						|  | features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "words": datasets.Sequence(feature=datasets.Value("string")), | 
					
						
						|  | "labels": datasets.Sequence( | 
					
						
						|  | feature=datasets.ClassLabel( | 
					
						
						|  | num_classes=len(self._SEMANTIC_ROLES), | 
					
						
						|  | names=self._SEMANTIC_ROLES | 
					
						
						|  | ) | 
					
						
						|  | ), | 
					
						
						|  | "is_category": datasets.Sequence(feature=datasets.Value("int8")), | 
					
						
						|  | "text": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | elif self.config.name == "ROLES_MULTI": | 
					
						
						|  | features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "words": datasets.Sequence(feature=datasets.Value("string")), | 
					
						
						|  | "labels": datasets.Sequence( | 
					
						
						|  | feature=datasets.ClassLabel( | 
					
						
						|  | num_classes=len(self._SEMANTIC_ROLES), | 
					
						
						|  | names=self._SEMANTIC_ROLES | 
					
						
						|  | ) | 
					
						
						|  | ), | 
					
						
						|  | "is_category": datasets.Sequence( | 
					
						
						|  | feature=datasets.ClassLabel( | 
					
						
						|  | num_classes=len(self._ROLES_MULTI), | 
					
						
						|  | names=self._ROLES_MULTI | 
					
						
						|  | ) | 
					
						
						|  | ), | 
					
						
						|  | "text": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | elif self.config.name == "PANELIZATION": | 
					
						
						|  | features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "words": datasets.Sequence(feature=datasets.Value("string")), | 
					
						
						|  | "labels": datasets.Sequence( | 
					
						
						|  | feature=datasets.ClassLabel(num_classes=len(self._PANEL_START_NAMES), | 
					
						
						|  | names=self._PANEL_START_NAMES) | 
					
						
						|  | ), | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return datasets.DatasetInfo( | 
					
						
						|  | description=self._DESCRIPTION, | 
					
						
						|  | features=features, | 
					
						
						|  | supervised_keys=("words", "label_ids"), | 
					
						
						|  | homepage=self._HOMEPAGE, | 
					
						
						|  | license=self._LICENSE, | 
					
						
						|  | citation=self._CITATION, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _split_generators(self, dl_manager: datasets.DownloadManager): | 
					
						
						|  | """Returns SplitGenerators. | 
					
						
						|  | Uses local files if a data_dir is specified. Otherwise downloads the files from their official url.""" | 
					
						
						|  |  | 
					
						
						|  | import pdb; pdb.set_trace() | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | urls = [ | 
					
						
						|  | self._URLS[self.config.name]+"train.jsonl", | 
					
						
						|  | self._URLS[self.config.name]+"test.jsonl", | 
					
						
						|  | self._URLS[self.config.name]+"validation.jsonl" | 
					
						
						|  | ] | 
					
						
						|  | data_files = dl_manager.download(urls) | 
					
						
						|  | except: | 
					
						
						|  | raise ValueError(f"unkonwn config name: {self.config.name}") | 
					
						
						|  |  | 
					
						
						|  | return [ | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=datasets.Split.TRAIN, | 
					
						
						|  |  | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "filepath": data_files[0]}, | 
					
						
						|  | ), | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=datasets.Split.TEST, | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "filepath": data_files[1]}, | 
					
						
						|  | ), | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=datasets.Split.VALIDATION, | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "filepath": data_files[2]}, | 
					
						
						|  | ), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def _generate_examples(self, filepath): | 
					
						
						|  | """Yields examples. This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method. | 
					
						
						|  | It is in charge of opening the given file and yielding (key, example) tuples from the dataset | 
					
						
						|  | The key is not important, it's more here for legacy reason (legacy from tfds)""" | 
					
						
						|  |  | 
					
						
						|  | with open(filepath, encoding="utf-8") as f: | 
					
						
						|  |  | 
					
						
						|  | for id_, row in enumerate(f): | 
					
						
						|  | data = json.loads(row) | 
					
						
						|  | if self.config.name == "NER": | 
					
						
						|  | yield id_, { | 
					
						
						|  | "words": data["words"], | 
					
						
						|  | "labels": data["labels"], | 
					
						
						|  | "tag_mask": data["is_category"], | 
					
						
						|  | "text": data["text"] | 
					
						
						|  | } | 
					
						
						|  | elif self.config.name == "ROLES_GP": | 
					
						
						|  | yield id_, { | 
					
						
						|  | "words": data["words"], | 
					
						
						|  | "labels": data["labels"], | 
					
						
						|  | "tag_mask": data["is_category"], | 
					
						
						|  | "text": data["text"] | 
					
						
						|  | } | 
					
						
						|  | elif self.config.name == "ROLES_MULTI": | 
					
						
						|  | labels = data["labels"] | 
					
						
						|  | tag_mask = [1 if t!=0 else 0 for t in labels] | 
					
						
						|  | yield id_, { | 
					
						
						|  | "words": data["words"], | 
					
						
						|  | "labels": data["labels"], | 
					
						
						|  | "tag_mask": tag_mask, | 
					
						
						|  | "category": data["is_category"], | 
					
						
						|  | "text": data["text"] | 
					
						
						|  | } | 
					
						
						|  | elif self.config.name == "ROLES_SM": | 
					
						
						|  | yield id_, { | 
					
						
						|  | "words": data["words"], | 
					
						
						|  | "labels": data["labels"], | 
					
						
						|  | "tag_mask": data["is_category"], | 
					
						
						|  | "text": data["text"] | 
					
						
						|  | } | 
					
						
						|  | elif self.config.name == "PANELIZATION": | 
					
						
						|  | labels = data["labels"] | 
					
						
						|  | tag_mask = [1 if t == "B-PANEL_START" else 0 for t in labels] | 
					
						
						|  | yield id_, { | 
					
						
						|  | "words": data["words"], | 
					
						
						|  | "labels": data["labels"], | 
					
						
						|  | "tag_mask": tag_mask, | 
					
						
						|  | "text": data["text"] | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  |