# With base > Depth base + ChatML tokens replaced. base_model: IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false ## Including a few datasets i have not used before. datasets: - path: Mielikki/Erebus-87k type: completion field: body - path: NewEden/Orion-Asstr-Stories-16K type: completion field: content - path: NewEden/Orion-LIT type: completion field: text - path: NewEden/Fujin-Cleaned-Final type: completion field: text shuffle_merged_datasets: true val_set_size: 0.0 output_dir: ./outputs adapter: lora_r: lora_alpha: lora_dropout: lora_target_linear: sequence_len: 32768 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true plugins: - axolotl.integrations.liger.LigerPlugin - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin liger_rope: true liger_rms_norm: true liger_layer_norm: true liger_glu_activation: true liger_fused_linear_cross_entropy: false cut_cross_entropy: true wandb_project: tavbussy wandb_entity: wandb_watch: wandb_name: Comp-attempt-1 wandb_log_model: # Gradient clipping to keep grad norm down. Using the same as QwQ's max grad norm as distributions are similar(or not idr) max_grad_norm: 0.2 hub_model_id: NewEden/Smol-pretrain hub_strategy: "all_checkpoints" push_dataset_to_hub: hf_use_auth_token: true gradient_accumulation_steps: 1 micro_batch_size: 8 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.00001 weight_decay: 0.02 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.1 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: deepspeed_configs/zero3_bf16.json fsdp: fsdp_config: special_tokens: pad_token: <|finetune_right_pad_id|>