Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
nlp-mark commited on
Commit
95340b1
·
verified ·
1 Parent(s): 32e8006

Delete loading script

Browse files
Files changed (1) hide show
  1. few-nerd.py +0 -319
few-nerd.py DELETED
@@ -1,319 +0,0 @@
1
- import os
2
- import json
3
- import datasets
4
- from tqdm.autonotebook import tqdm
5
-
6
-
7
- _CITATION = """
8
- @inproceedings{ding2021few,
9
- title={Few-NERD: A Few-Shot Named Entity Recognition Dataset},
10
- author={Ding, Ning and Xu, Guangwei and Chen, Yulin, and Wang, Xiaobin and Han, Xu and Xie,
11
- Pengjun and Zheng, Hai-Tao and Liu, Zhiyuan},
12
- booktitle={ACL-IJCNLP},
13
- year={2021}
14
- }
15
- """
16
-
17
- _DESCRIPTION = """
18
- Few-NERD is a large-scale, fine-grained manually annotated named entity recognition dataset,
19
- which contains 8 coarse-grained types, 66 fine-grained types, 188,200 sentences, 491,711 entities
20
- and 4,601,223 tokens. Three benchmark tasks are built, one is supervised: Few-NERD (SUP) and the
21
- other two are few-shot: Few-NERD (INTRA) and Few-NERD (INTER).
22
- """
23
-
24
- _LICENSE = "CC BY-SA 4.0"
25
-
26
- # the original data files (zip of .txt) can be downloaded from tsinghua cloud, but we chose to host them on huggingface.co
27
- # for better reliability and download speed
28
- _URL = "https://huggingface.co/datasets/DFKI-SLT/few-nerd/resolve/main/data"
29
- _URLs = {
30
- "supervised": f"{_URL}/supervised.zip",
31
- "intra": f"{_URL}/intra.zip",
32
- "inter": f"{_URL}/inter.zip"
33
- }
34
-
35
- # the label ids, for coarse(NER_TAGS_DICT) and fine(FINE_NER_TAGS_DICT)
36
- NER_TAGS_DICT = {
37
- "O": 0,
38
- "art": 1,
39
- "building": 2,
40
- "event": 3,
41
- "location": 4,
42
- "organization": 5,
43
- "other": 6,
44
- "person": 7,
45
- "product": 8,
46
- }
47
-
48
- FINE_NER_TAGS_DICT = {
49
- "O": 0,
50
- "art-broadcastprogram": 1,
51
- "art-film": 2,
52
- "art-music": 3,
53
- "art-other": 4,
54
- "art-painting": 5,
55
- "art-writtenart": 6,
56
- "building-airport": 7,
57
- "building-hospital": 8,
58
- "building-hotel": 9,
59
- "building-library": 10,
60
- "building-other": 11,
61
- "building-restaurant": 12,
62
- "building-sportsfacility": 13,
63
- "building-theater": 14,
64
- "event-attack/battle/war/militaryconflict": 15,
65
- "event-disaster": 16,
66
- "event-election": 17,
67
- "event-other": 18,
68
- "event-protest": 19,
69
- "event-sportsevent": 20,
70
- "location-GPE": 21,
71
- "location-bodiesofwater": 22,
72
- "location-island": 23,
73
- "location-mountain": 24,
74
- "location-other": 25,
75
- "location-park": 26,
76
- "location-road/railway/highway/transit": 27,
77
- "organization-company": 28,
78
- "organization-education": 29,
79
- "organization-government/governmentagency": 30,
80
- "organization-media/newspaper": 31,
81
- "organization-other": 32,
82
- "organization-politicalparty": 33,
83
- "organization-religion": 34,
84
- "organization-showorganization": 35,
85
- "organization-sportsleague": 36,
86
- "organization-sportsteam": 37,
87
- "other-astronomything": 38,
88
- "other-award": 39,
89
- "other-biologything": 40,
90
- "other-chemicalthing": 41,
91
- "other-currency": 42,
92
- "other-disease": 43,
93
- "other-educationaldegree": 44,
94
- "other-god": 45,
95
- "other-language": 46,
96
- "other-law": 47,
97
- "other-livingthing": 48,
98
- "other-medical": 49,
99
- "person-actor": 50,
100
- "person-artist/author": 51,
101
- "person-athlete": 52,
102
- "person-director": 53,
103
- "person-other": 54,
104
- "person-politician": 55,
105
- "person-scholar": 56,
106
- "person-soldier": 57,
107
- "product-airplane": 58,
108
- "product-car": 59,
109
- "product-food": 60,
110
- "product-game": 61,
111
- "product-other": 62,
112
- "product-ship": 63,
113
- "product-software": 64,
114
- "product-train": 65,
115
- "product-weapon": 66,
116
- }
117
-
118
-
119
- class FewNERDConfig(datasets.BuilderConfig):
120
- """BuilderConfig for FewNERD"""
121
-
122
- def __init__(self, **kwargs):
123
- """BuilderConfig for FewNERD.
124
-
125
- Args:
126
- **kwargs: keyword arguments forwarded to super.
127
- """
128
- super(FewNERDConfig, self).__init__(**kwargs)
129
-
130
-
131
- class FewNERD(datasets.GeneratorBasedBuilder):
132
- BUILDER_CONFIGS = [
133
- FewNERDConfig(name="supervised", description="Fully supervised setting."),
134
- FewNERDConfig(
135
- name="inter",
136
- description="Few-shot setting. Each file contains all 8 coarse "
137
- "types but different fine-grained types.",
138
- ),
139
- FewNERDConfig(
140
- name="intra", description="Few-shot setting. Randomly split by coarse type."
141
- ),
142
- ]
143
-
144
- def _info(self):
145
- return datasets.DatasetInfo(
146
- description=_DESCRIPTION,
147
- features=datasets.Features(
148
- {
149
- "id": datasets.Value("string"),
150
- "tokens": datasets.features.Sequence(datasets.Value("string")),
151
- "ner_tags": datasets.features.Sequence(
152
- datasets.features.ClassLabel(
153
- names=[
154
- "O",
155
- "art",
156
- "building",
157
- "event",
158
- "location",
159
- "organization",
160
- "other",
161
- "person",
162
- "product",
163
- ]
164
- )
165
- ),
166
- "fine_ner_tags": datasets.Sequence(
167
- datasets.features.ClassLabel(
168
- names=[
169
- "O",
170
- "art-broadcastprogram",
171
- "art-film",
172
- "art-music",
173
- "art-other",
174
- "art-painting",
175
- "art-writtenart",
176
- "building-airport",
177
- "building-hospital",
178
- "building-hotel",
179
- "building-library",
180
- "building-other",
181
- "building-restaurant",
182
- "building-sportsfacility",
183
- "building-theater",
184
- "event-attack/battle/war/militaryconflict",
185
- "event-disaster",
186
- "event-election",
187
- "event-other",
188
- "event-protest",
189
- "event-sportsevent",
190
- "location-GPE",
191
- "location-bodiesofwater",
192
- "location-island",
193
- "location-mountain",
194
- "location-other",
195
- "location-park",
196
- "location-road/railway/highway/transit",
197
- "organization-company",
198
- "organization-education",
199
- "organization-government/governmentagency",
200
- "organization-media/newspaper",
201
- "organization-other",
202
- "organization-politicalparty",
203
- "organization-religion",
204
- "organization-showorganization",
205
- "organization-sportsleague",
206
- "organization-sportsteam",
207
- "other-astronomything",
208
- "other-award",
209
- "other-biologything",
210
- "other-chemicalthing",
211
- "other-currency",
212
- "other-disease",
213
- "other-educationaldegree",
214
- "other-god",
215
- "other-language",
216
- "other-law",
217
- "other-livingthing",
218
- "other-medical",
219
- "person-actor",
220
- "person-artist/author",
221
- "person-athlete",
222
- "person-director",
223
- "person-other",
224
- "person-politician",
225
- "person-scholar",
226
- "person-soldier",
227
- "product-airplane",
228
- "product-car",
229
- "product-food",
230
- "product-game",
231
- "product-other",
232
- "product-ship",
233
- "product-software",
234
- "product-train",
235
- "product-weapon",
236
- ]
237
- )
238
- ),
239
- }
240
- ),
241
- supervised_keys=None,
242
- homepage="https://ningding97.github.io/fewnerd/",
243
- citation=_CITATION,
244
- )
245
-
246
- def _split_generators(self, dl_manager):
247
- """Returns SplitGenerators."""
248
- url_to_download = dl_manager.download_and_extract(_URLs[self.config.name])
249
- return [
250
- datasets.SplitGenerator(
251
- name=datasets.Split.TRAIN,
252
- gen_kwargs={
253
- "filepath": os.path.join(
254
- url_to_download,
255
- self.config.name,
256
- "train.txt",
257
- )
258
- },
259
- ),
260
- datasets.SplitGenerator(
261
- name=datasets.Split.VALIDATION,
262
- gen_kwargs={
263
- "filepath": os.path.join(
264
- url_to_download, self.config.name, "dev.txt"
265
- )
266
- },
267
- ),
268
- datasets.SplitGenerator(
269
- name=datasets.Split.TEST,
270
- gen_kwargs={
271
- "filepath": os.path.join(
272
- url_to_download, self.config.name, "test.txt"
273
- )
274
- },
275
- ),
276
- ]
277
-
278
- def _generate_examples(self, filepath=None):
279
- # check file type
280
- assert filepath[-4:] == ".txt"
281
-
282
- num_lines = sum(1 for _ in open(filepath, encoding="utf-8"))
283
- id = 0
284
-
285
- with open(filepath, "r", encoding="utf-8") as f:
286
- tokens, ner_tags, fine_ner_tags = [], [], []
287
- for line in tqdm(f, total=num_lines):
288
- line = line.strip().split()
289
-
290
- if line:
291
- assert len(line) == 2
292
- token, fine_ner_tag = line
293
- ner_tag = fine_ner_tag.split("-")[0]
294
-
295
- tokens.append(token)
296
- ner_tags.append(NER_TAGS_DICT[ner_tag])
297
- fine_ner_tags.append(FINE_NER_TAGS_DICT[fine_ner_tag])
298
-
299
- elif tokens:
300
- # organize a record to be written into json
301
- record = {
302
- "tokens": tokens,
303
- "id": str(id),
304
- "ner_tags": ner_tags,
305
- "fine_ner_tags": fine_ner_tags,
306
- }
307
- tokens, ner_tags, fine_ner_tags = [], [], []
308
- id += 1
309
- yield record["id"], record
310
-
311
- # take the last sentence
312
- if tokens:
313
- record = {
314
- "tokens": tokens,
315
- "id": str(id),
316
- "ner_tags": ner_tags,
317
- "fine_ner_tags": fine_ner_tags,
318
- }
319
- yield record["id"], record