Datasets:
HVU_QA
Browse files- HVU_QA/fine_tune_qg.py +104 -0
- HVU_QA/generate_question.py +139 -0
HVU_QA/fine_tune_qg.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from datasets import Dataset
|
3 |
+
from sklearn.model_selection import train_test_split
|
4 |
+
from transformers import (
|
5 |
+
T5Tokenizer,
|
6 |
+
T5ForConditionalGeneration,
|
7 |
+
TrainingArguments,
|
8 |
+
Trainer
|
9 |
+
)
|
10 |
+
|
11 |
+
def load_squad_data(file_path):
|
12 |
+
|
13 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
14 |
+
squad_data = json.load(f)
|
15 |
+
|
16 |
+
data = []
|
17 |
+
for article in squad_data["data"]:
|
18 |
+
for paragraph in article["paragraphs"]:
|
19 |
+
context = paragraph.get("context", "")
|
20 |
+
for qa in paragraph["qas"]:
|
21 |
+
if not qa.get("is_impossible", False) and qa.get("answers"):
|
22 |
+
answer = qa["answers"][0]["text"]
|
23 |
+
question = qa["question"]
|
24 |
+
input_text = f"answer: {answer} context: {context}"
|
25 |
+
data.append({"input": input_text, "target": question})
|
26 |
+
return data
|
27 |
+
|
28 |
+
def preprocess_function(example, tokenizer, max_input_length=512, max_target_length=64):
|
29 |
+
|
30 |
+
model_inputs = tokenizer(
|
31 |
+
example["input"],
|
32 |
+
max_length=max_input_length,
|
33 |
+
padding="max_length",
|
34 |
+
truncation=True,
|
35 |
+
)
|
36 |
+
labels = tokenizer(
|
37 |
+
text_target=example["target"],
|
38 |
+
max_length=max_target_length,
|
39 |
+
padding="max_length",
|
40 |
+
truncation=True,
|
41 |
+
)
|
42 |
+
model_inputs["labels"] = labels["input_ids"]
|
43 |
+
return model_inputs
|
44 |
+
|
45 |
+
def main():
|
46 |
+
data_path = "30ktrain.json"
|
47 |
+
output_dir = "t5-viet-qg-finetuned"
|
48 |
+
logs_dir = "logs"
|
49 |
+
model_name = "VietAI/vit5-base"
|
50 |
+
|
51 |
+
print("Tải mô hình và tokenizer...")
|
52 |
+
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
53 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
54 |
+
|
55 |
+
print("Đọc và chia dữ liệu...")
|
56 |
+
raw_data = load_squad_data(data_path)
|
57 |
+
train_data, val_data = train_test_split(raw_data, test_size=0.2, random_state=42)
|
58 |
+
|
59 |
+
train_dataset = Dataset.from_list(train_data)
|
60 |
+
val_dataset = Dataset.from_list(val_data)
|
61 |
+
|
62 |
+
tokenized_train = train_dataset.map(
|
63 |
+
lambda x: preprocess_function(x, tokenizer),
|
64 |
+
batched=True,
|
65 |
+
remove_columns=["input", "target"]
|
66 |
+
)
|
67 |
+
tokenized_val = val_dataset.map(
|
68 |
+
lambda x: preprocess_function(x, tokenizer),
|
69 |
+
batched=True,
|
70 |
+
remove_columns=["input", "target"]
|
71 |
+
)
|
72 |
+
|
73 |
+
print("Cấu hình huấn luyện...")
|
74 |
+
training_args = TrainingArguments(
|
75 |
+
output_dir=output_dir,
|
76 |
+
overwrite_output_dir=True,
|
77 |
+
per_device_train_batch_size=1,
|
78 |
+
gradient_accumulation_steps=1,
|
79 |
+
num_train_epochs=3,
|
80 |
+
learning_rate=2e-4,
|
81 |
+
weight_decay=0.01,
|
82 |
+
warmup_steps=0,
|
83 |
+
logging_dir=logs_dir,
|
84 |
+
logging_steps=10,
|
85 |
+
fp16=False
|
86 |
+
)
|
87 |
+
|
88 |
+
print("Huấn luyện mô hình...")
|
89 |
+
trainer = Trainer(
|
90 |
+
model=model,
|
91 |
+
args=training_args,
|
92 |
+
train_dataset=tokenized_train,
|
93 |
+
eval_dataset=tokenized_val,
|
94 |
+
tokenizer=tokenizer,
|
95 |
+
)
|
96 |
+
trainer.train()
|
97 |
+
|
98 |
+
print("Lưu mô hình...")
|
99 |
+
model.save_pretrained(output_dir)
|
100 |
+
tokenizer.save_pretrained(output_dir)
|
101 |
+
print("Huấn luyện hoàn tất!")
|
102 |
+
|
103 |
+
if __name__ == "__main__":
|
104 |
+
main()
|
HVU_QA/generate_question.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from difflib import SequenceMatcher
|
3 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
4 |
+
from transformers.utils import logging as hf_logging
|
5 |
+
|
6 |
+
hf_logging.set_verbosity_error()
|
7 |
+
|
8 |
+
MODEL_DIR = "t5-viet-qg-finetuned"
|
9 |
+
DATA_PATH = "30ktrain.json"
|
10 |
+
|
11 |
+
tokenizer = T5Tokenizer.from_pretrained(MODEL_DIR)
|
12 |
+
model = T5ForConditionalGeneration.from_pretrained(MODEL_DIR)
|
13 |
+
|
14 |
+
def find_best_match_from_context(user_context, squad_data):
|
15 |
+
best_score, best_entry = 0.0, None
|
16 |
+
ui = user_context.lower()
|
17 |
+
|
18 |
+
for article in squad_data.get("data", []):
|
19 |
+
context_title = article.get("title", "")
|
20 |
+
score_title = SequenceMatcher(None, ui, context_title.lower()).ratio()
|
21 |
+
|
22 |
+
for paragraph in article.get("paragraphs", []):
|
23 |
+
context = paragraph.get("context", "")
|
24 |
+
for qa in paragraph.get("qas", []):
|
25 |
+
answers = qa.get("answers", [])
|
26 |
+
if not answers:
|
27 |
+
continue
|
28 |
+
answer_text = answers[0].get("text", "").strip()
|
29 |
+
question_text = qa.get("question", "").strip()
|
30 |
+
|
31 |
+
score = score_title
|
32 |
+
if score > best_score:
|
33 |
+
best_score = score
|
34 |
+
best_entry = (context, answer_text, question_text)
|
35 |
+
|
36 |
+
return best_entry
|
37 |
+
|
38 |
+
def _near_duplicate(q, seen, thr=0.90):
|
39 |
+
for s in seen:
|
40 |
+
if SequenceMatcher(None, q, s).ratio() >= thr:
|
41 |
+
return True
|
42 |
+
return False
|
43 |
+
|
44 |
+
def generate_questions(user_context,
|
45 |
+
total_questions=20,
|
46 |
+
batch_size=10,
|
47 |
+
top_k=60,
|
48 |
+
top_p=0.95,
|
49 |
+
temperature=0.9, # Tăng temperature để sinh câu hỏi sáng tạo hơn
|
50 |
+
max_input_len=512,
|
51 |
+
max_new_tokens=64):
|
52 |
+
with open(DATA_PATH, "r", encoding="utf-8") as f:
|
53 |
+
squad_data = json.load(f)
|
54 |
+
|
55 |
+
best_entry = find_best_match_from_context(user_context, squad_data)
|
56 |
+
if best_entry is None:
|
57 |
+
print("Không tìm thấy dữ liệu phù hợp trong file JSON.")
|
58 |
+
return
|
59 |
+
|
60 |
+
context, answer, _ = best_entry
|
61 |
+
|
62 |
+
|
63 |
+
input_text = f"answer: {answer} context: {context}"
|
64 |
+
inputs = tokenizer(
|
65 |
+
input_text,
|
66 |
+
return_tensors="pt",
|
67 |
+
truncation=True,
|
68 |
+
max_length=max_input_len
|
69 |
+
)
|
70 |
+
|
71 |
+
unique_questions = []
|
72 |
+
remaining = total_questions
|
73 |
+
|
74 |
+
while remaining > 0:
|
75 |
+
n = min(batch_size, remaining)
|
76 |
+
outputs = model.generate(
|
77 |
+
**inputs,
|
78 |
+
do_sample=True,
|
79 |
+
top_k=top_k,
|
80 |
+
top_p=top_p,
|
81 |
+
temperature=temperature,
|
82 |
+
max_new_tokens=max_new_tokens,
|
83 |
+
num_return_sequences=n,
|
84 |
+
no_repeat_ngram_size=3,
|
85 |
+
repetition_penalty=1.12
|
86 |
+
)
|
87 |
+
|
88 |
+
for out in outputs:
|
89 |
+
q = tokenizer.decode(out, skip_special_tokens=True).strip()
|
90 |
+
if len(q) < 5:
|
91 |
+
continue
|
92 |
+
if not _near_duplicate(q, unique_questions, thr=0.90):
|
93 |
+
unique_questions.append(q)
|
94 |
+
|
95 |
+
remaining = total_questions - len(unique_questions)
|
96 |
+
if remaining <= 0:
|
97 |
+
break
|
98 |
+
|
99 |
+
unique_questions = unique_questions[:total_questions]
|
100 |
+
|
101 |
+
|
102 |
+
print("Các câu hỏi mới được sinh ra:")
|
103 |
+
for i, q in enumerate(unique_questions, 1):
|
104 |
+
if not q.endswith("?"):
|
105 |
+
q += "?"
|
106 |
+
print(f"{i}. {q}")
|
107 |
+
|
108 |
+
if __name__ == "__main__":
|
109 |
+
user_context = input("\nNhập đoạn văn bản:\n ").strip()
|
110 |
+
|
111 |
+
raw_n = input("\nNhập vào số lượng câu hỏi bạn cần:").strip()
|
112 |
+
if raw_n == "":
|
113 |
+
total_questions = 20
|
114 |
+
else:
|
115 |
+
try:
|
116 |
+
total_questions = int(raw_n)
|
117 |
+
except ValueError:
|
118 |
+
print("Giá trị không hợp lệ. Dùng mặc định 20.")
|
119 |
+
total_questions = 20
|
120 |
+
|
121 |
+
if total_questions < 1:
|
122 |
+
total_questions = 1
|
123 |
+
if total_questions > 200:
|
124 |
+
total_questions = 200
|
125 |
+
|
126 |
+
batch_size = 20 if total_questions >= 30 else min(20, total_questions)
|
127 |
+
|
128 |
+
print("\nĐang phân tích dữ liệu...\n")
|
129 |
+
|
130 |
+
generate_questions(
|
131 |
+
user_context=user_context,
|
132 |
+
total_questions=total_questions,
|
133 |
+
batch_size=batch_size,
|
134 |
+
top_k=60,
|
135 |
+
top_p=0.95,
|
136 |
+
temperature=0.9,
|
137 |
+
max_input_len=512,
|
138 |
+
max_new_tokens=64
|
139 |
+
)
|