DANGDOCAO commited on
Commit
634eb1c
·
verified ·
1 Parent(s): 81e881b

update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -152
README.md DELETED
@@ -1,152 +0,0 @@
1
- ---
2
- license: mit
3
- task_categories:
4
- - question-answering
5
- language:
6
- - vi
7
- tags:
8
- - ag
9
- - t5
10
- - vit5
11
- - squad-format
12
- - vietnamese
13
- - education
14
- - nlp
15
- pretty_name: Vietnamese Question Generation
16
- size_categories:
17
- - 10K<n<100K
18
- ---
19
-
20
- # HVU_QA
21
-
22
- **HVU_QA** is an open-source Vietnamese Question–Context–Answer (QCA) corpus for building FAQ-style question generation systems in low-resource languages.
23
- It was created using a fully automated pipeline combining web crawling, semantic tag-based extraction, and AI-assisted filtering to ensure high factual accuracy.
24
-
25
- ---
26
-
27
- ## Dataset Description
28
-
29
- - **Language:** Vietnamese
30
- - **Format:** SQuAD-style JSON
31
- - **Size:** 30,000 QCA triples
32
- - **Domains:** Social services, labor law, administrative processes, and public service topics.
33
-
34
- Each data sample contains:
35
- - `question`: The generated or extracted question
36
- - `context`: The supporting passage
37
- - `answer`: The answer span within the context
38
-
39
- ---
40
-
41
- ## ⚙️ Dataset Creation
42
-
43
- **Pipeline:**
44
- 1. Selecting relevant QA websites from trusted sources
45
- 2. Automated crawling to collect raw QA webpages
46
- 3. Semantic tag-based extraction to get clean QCA triples
47
- 4. AI-assisted filtering to remove noisy or inconsistent samples
48
-
49
- **Annotation & Licensing:**
50
- All data are collected from public-domain Vietnamese government and service portals, released under CC BY 4.0.
51
-
52
- ---
53
-
54
- ## Quality Evaluation
55
-
56
- A fine-tuned `VietAI/vit5-base` model trained on HVU_QA achieved:
57
-
58
- | Metric | Score |
59
- |-----------------------|-------------|
60
- | BLEU | 90.61 |
61
- | Semantic similarity | 97.0% (cos ≥ 0.8) |
62
- | Human grammar | 4.58 / 5 |
63
- | Human usefulness | 4.29 / 5 |
64
-
65
- ---
66
-
67
- ## Data Fields
68
-
69
- ```json
70
- {
71
- "question": "string",
72
- "context": "string",
73
- "answer": "string"
74
- }
75
- ```
76
-
77
- - `question`: The question text
78
- - `context`: The paragraph containing the answer
79
- - `answer`: The answer span
80
-
81
- ---
82
-
83
- ## How to Use
84
-
85
- ### Load from Hub
86
-
87
- ```python
88
- from datasets import load_dataset
89
- ds = load_dataset("DANGDOCAO/GeneratingQuestions", split="train")
90
- print(ds[0])
91
- ```
92
-
93
- ### Install Dependencies
94
-
95
- ```bash
96
- pip install datasets transformers sentencepiece safetensors accelerate evaluate sacrebleu rouge-score nltk scikit-learn
97
- ```
98
-
99
- (Optional) Install PyTorch separately from [pytorch.org](https://pytorch.org)
100
-
101
- ---
102
-
103
- ## Example Usage
104
-
105
- ### Fine-tune a Question Generation Model
106
-
107
- ```bash
108
- python fine_tune_qg.py
109
- ```
110
-
111
- This will:
112
- 1. Load data from `30ktrain.json`
113
- 2. Fine-tune `VietAI/vit5-base`
114
- 3. Save model to `t5-viet-qg-finetuned/`
115
-
116
- ### Generate Questions
117
-
118
- ```bash
119
- python generate_question.py
120
- ```
121
-
122
- **Example**
123
- ```
124
- Input passage:
125
- Iced milk coffee (Cà phê sữa đá) is a famous drink in Vietnam.
126
- Number of questions: 5
127
- ```
128
-
129
- **Output**
130
- 1. What type of coffee is famous in Vietnam?
131
- 2. Why is iced milk coffee popular?
132
- 3. What ingredients are included in iced milk coffee?
133
- 4. Where does iced milk coffee originate from?
134
- 5. How is Vietnamese iced milk coffee prepared?
135
-
136
- **You can adjust** in `generate_question.py`:
137
- `top_k`, `top_p`, `temperature`, `no_repeat_ngram_size`, `repetition_penalty`
138
-
139
- ---
140
-
141
- ## Citation
142
-
143
- If you use **HVU_QA** in your research:
144
-
145
- ```bibtex
146
- @inproceedings{nguyen2025hvuqa,
147
- title={A Method to Build QA Corpora for Low-Resource Languages},
148
- author={Ha Nguyen-Tien and Phuc Le-Hong and Dang Do-Cao and Cuong Nguyen-Hung and Chung Mai-Van},
149
- booktitle={Proceedings of the International Conference on Knowledge and Systems Engineering (KSE)},
150
- year={2025}
151
- }
152
- ```