File size: 1,907 Bytes
58c0ae0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af88608
 
 
 
 
 
 
58c0ae0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
license: cc-by-nc-sa-4.0
task_categories:
- text-generation
language:
- zh
tags:
- metaphor
- figurative language
pretty_name: CMC
size_categories:
- 1K<n<10K
---

# Chinese Metaphor Corpus (CMC)

## Dataset Description

- **Homepage:** https://github.com/liyucheng09/Metaphor_Generator
- **Repository:** https://github.com/liyucheng09/Metaphor_Generator
- **Paper:** CM-Gen: A Neural Framework for Chinese Metaphor Generation with Explicit Context Modelling
- **Leaderboard:** 
- **Point of Contact:** [email protected]

### Dataset Summary

The first Chinese metaphor corpus serving both metaphor identification and generation. We construct a big metaphor resoruce in Chinese with around 9000 metaphorical sentences with tenor and vehicle annotated. Check out more details in the [github repo](https://github.com/liyucheng09/Metaphor_Generator) and our [paper](https://aclanthology.org/2022.coling-1.563/) presenting at COLING 2022.

首个中文比喻数据集,可以用于中文比喻识别与中文比喻生成。在[知乎](https://zhuanlan.zhihu.com/p/572740322)查看更多细节。

Metadata in **Creative Language Toolkit ([CLTK](https://github.com/liyucheng09/cltk))**:
- CL Type: metaphor
- Task Type: detection, generation
- Size: 10k
- Created time: 2021
- Language: zh

### Languages

Chinese


### Citation Information

```
@inproceedings{li-etal-2022-cm,
    title = "{CM}-Gen: A Neural Framework for {C}hinese Metaphor Generation with Explicit Context Modelling",
    author = "Li, Yucheng  and
      Lin, Chenghua  and
      Guerin, Frank",
    booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
    month = oct,
    year = "2022",
    address = "Gyeongju, Republic of Korea",
    publisher = "International Committee on Computational Linguistics",
    url = "https://aclanthology.org/2022.coling-1.563",
    pages = "6468--6479",
}
```