Upload preprocess.py
Browse files- preprocess.py +232 -0
preprocess.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
from zipfile import ZipFile, ZIP_DEFLATED
|
5 |
+
from shutil import rmtree
|
6 |
+
|
7 |
+
ontology = {
|
8 |
+
'domains': {
|
9 |
+
'restaurant': {
|
10 |
+
'description': 'search for a restaurant to dine',
|
11 |
+
'slots': {
|
12 |
+
'food': {
|
13 |
+
'description': 'food type of the restaurant',
|
14 |
+
'is_categorical': False,
|
15 |
+
'possible_values': []
|
16 |
+
},
|
17 |
+
'area': {
|
18 |
+
'description': 'area of the restaurant',
|
19 |
+
'is_categorical': True,
|
20 |
+
'possible_values': ["east", "west", "centre", "north", "south"]
|
21 |
+
},
|
22 |
+
'postcode': {
|
23 |
+
'description': 'postal code of the restaurant',
|
24 |
+
'is_categorical': False,
|
25 |
+
'possible_values': []
|
26 |
+
},
|
27 |
+
'phone': {
|
28 |
+
'description': 'phone number of the restaurant',
|
29 |
+
'is_categorical': False,
|
30 |
+
'possible_values': []
|
31 |
+
},
|
32 |
+
'address': {
|
33 |
+
'description': 'address of the restaurant',
|
34 |
+
'is_categorical': False,
|
35 |
+
'possible_values': []
|
36 |
+
},
|
37 |
+
'price range': {
|
38 |
+
'description': 'price range of the restaurant',
|
39 |
+
'is_categorical': True,
|
40 |
+
'possible_values': ["expensive", "moderate", "cheap"]
|
41 |
+
},
|
42 |
+
'name': {
|
43 |
+
'description': 'name of the restaurant',
|
44 |
+
'is_categorical': False,
|
45 |
+
'possible_values': []
|
46 |
+
}
|
47 |
+
}
|
48 |
+
}
|
49 |
+
},
|
50 |
+
'intents': {
|
51 |
+
'inform': {
|
52 |
+
'description': 'system informs user the value of a slot'
|
53 |
+
},
|
54 |
+
'request': {
|
55 |
+
'description': 'system asks the user to provide value of a slot'
|
56 |
+
}
|
57 |
+
},
|
58 |
+
'state': {
|
59 |
+
'restaurant': {
|
60 |
+
'food': '',
|
61 |
+
'area': '',
|
62 |
+
'postcode': '',
|
63 |
+
'phone': '',
|
64 |
+
'address': '',
|
65 |
+
'price range': '',
|
66 |
+
'name': ''
|
67 |
+
}
|
68 |
+
},
|
69 |
+
"dialogue_acts": {
|
70 |
+
"categorical": {},
|
71 |
+
"non-categorical": {},
|
72 |
+
"binary": {}
|
73 |
+
}
|
74 |
+
}
|
75 |
+
|
76 |
+
|
77 |
+
def convert_da(da, utt):
|
78 |
+
global ontology
|
79 |
+
|
80 |
+
converted = {
|
81 |
+
'binary': [],
|
82 |
+
'categorical': [],
|
83 |
+
'non-categorical': []
|
84 |
+
}
|
85 |
+
|
86 |
+
for s, v in da:
|
87 |
+
if s == 'request':
|
88 |
+
converted['binary'].append({
|
89 |
+
'intent': 'request',
|
90 |
+
'domain': 'restaurant',
|
91 |
+
'slot': v,
|
92 |
+
})
|
93 |
+
|
94 |
+
else:
|
95 |
+
slot_type = 'categorical' if ontology['domains']['restaurant']['slots'][s]['is_categorical'] else 'non-categorical'
|
96 |
+
|
97 |
+
v = v.strip()
|
98 |
+
if v != 'dontcare' and ontology['domains']['restaurant']['slots'][s]['is_categorical']:
|
99 |
+
if v == 'center':
|
100 |
+
v = 'centre'
|
101 |
+
elif v == 'east side':
|
102 |
+
v = 'east'
|
103 |
+
assert v in ontology['domains']['restaurant']['slots'][s]['possible_values'], print([s,v, utt])
|
104 |
+
|
105 |
+
converted[slot_type].append({
|
106 |
+
'intent': 'inform',
|
107 |
+
'domain': 'restaurant',
|
108 |
+
'slot': s,
|
109 |
+
'value': v
|
110 |
+
})
|
111 |
+
|
112 |
+
if slot_type == 'non-categorical' and v != 'dontcare':
|
113 |
+
|
114 |
+
start = utt.lower().find(v)
|
115 |
+
|
116 |
+
if start != -1:
|
117 |
+
end = start + len(v)
|
118 |
+
converted[slot_type][-1]['start'] = start
|
119 |
+
converted[slot_type][-1]['end'] = end
|
120 |
+
converted[slot_type][-1]['value'] = utt[start:end]
|
121 |
+
|
122 |
+
return converted
|
123 |
+
|
124 |
+
|
125 |
+
def preprocess():
|
126 |
+
original_data_dir = 'woz'
|
127 |
+
new_data_dir = 'data'
|
128 |
+
os.makedirs(new_data_dir, exist_ok=True)
|
129 |
+
|
130 |
+
dataset = 'woz'
|
131 |
+
splits = ['train', 'validation', 'test']
|
132 |
+
domain = 'restaurant'
|
133 |
+
dialogues_by_split = {split: [] for split in splits}
|
134 |
+
global ontology
|
135 |
+
|
136 |
+
for split in splits:
|
137 |
+
if split != 'validation':
|
138 |
+
filename = os.path.join(original_data_dir, f'woz_{split}_en.json')
|
139 |
+
else:
|
140 |
+
filename = os.path.join(original_data_dir, 'woz_validate_en.json')
|
141 |
+
if not os.path.exists(filename):
|
142 |
+
raise FileNotFoundError(
|
143 |
+
f'cannot find {filename}, should manually download from https://github.com/nmrksic/neural-belief-tracker/tree/master/data/woz')
|
144 |
+
|
145 |
+
data = json.load(open(filename))
|
146 |
+
|
147 |
+
for item in data:
|
148 |
+
dialogue = {
|
149 |
+
'dataset': dataset,
|
150 |
+
'data_split': split,
|
151 |
+
'dialogue_id': f'{dataset}-{split}-{len(dialogues_by_split[split])}',
|
152 |
+
'original_id': item['dialogue_idx'],
|
153 |
+
'domains': [domain],
|
154 |
+
'turns': []
|
155 |
+
}
|
156 |
+
|
157 |
+
turns = item['dialogue']
|
158 |
+
n_turn = len(turns)
|
159 |
+
|
160 |
+
for i in range(n_turn):
|
161 |
+
sys_utt = turns[i]['system_transcript'].strip()
|
162 |
+
usr_utt = turns[i]['transcript'].strip()
|
163 |
+
usr_da = turns[i]['turn_label']
|
164 |
+
|
165 |
+
for s, v in usr_da:
|
166 |
+
if s == 'request':
|
167 |
+
assert v in ontology['domains']['restaurant']['slots']
|
168 |
+
else:
|
169 |
+
assert s in ontology['domains']['restaurant']['slots']
|
170 |
+
|
171 |
+
if i != 0:
|
172 |
+
dialogue['turns'].append({
|
173 |
+
'utt_idx': len(dialogue['turns']),
|
174 |
+
'speaker': 'system',
|
175 |
+
'utterance': sys_utt,
|
176 |
+
})
|
177 |
+
|
178 |
+
cur_state = copy.deepcopy(ontology['state'])
|
179 |
+
for act_slots in turns[i]['belief_state']:
|
180 |
+
act, slots = act_slots['act'], act_slots['slots']
|
181 |
+
if act == 'inform':
|
182 |
+
for s, v in slots:
|
183 |
+
v = v.strip()
|
184 |
+
if v != 'dontcare' and ontology['domains']['restaurant']['slots'][s]['is_categorical']:
|
185 |
+
if v not in ontology['domains']['restaurant']['slots'][s]['possible_values']:
|
186 |
+
if v == 'center':
|
187 |
+
v = 'centre'
|
188 |
+
elif v == 'east side':
|
189 |
+
v = 'east'
|
190 |
+
assert v in ontology['domains']['restaurant']['slots'][s]['possible_values']
|
191 |
+
|
192 |
+
cur_state[domain][s] = v
|
193 |
+
|
194 |
+
cur_usr_da = convert_da(usr_da, usr_utt)
|
195 |
+
|
196 |
+
# add to dialogue_acts dictionary in the ontology
|
197 |
+
for da_type in cur_usr_da:
|
198 |
+
das = cur_usr_da[da_type]
|
199 |
+
for da in das:
|
200 |
+
ontology["dialogue_acts"][da_type].setdefault((da['intent'], da['domain'], da['slot']), {})
|
201 |
+
ontology["dialogue_acts"][da_type][(da['intent'], da['domain'], da['slot'])]['user'] = True
|
202 |
+
|
203 |
+
dialogue['turns'].append({
|
204 |
+
'utt_idx': len(dialogue['turns']),
|
205 |
+
'speaker': 'user',
|
206 |
+
'utterance': usr_utt,
|
207 |
+
'state': cur_state,
|
208 |
+
'dialogue_acts': cur_usr_da,
|
209 |
+
})
|
210 |
+
|
211 |
+
dialogues_by_split[split].append(dialogue)
|
212 |
+
|
213 |
+
dialogues = []
|
214 |
+
for split in splits:
|
215 |
+
dialogues += dialogues_by_split[split]
|
216 |
+
for da_type in ontology['dialogue_acts']:
|
217 |
+
ontology["dialogue_acts"][da_type] = sorted([str(
|
218 |
+
{'user': speakers.get('user', False), 'system': speakers.get('system', False), 'intent': da[0],
|
219 |
+
'domain': da[1], 'slot': da[2]}) for da, speakers in ontology["dialogue_acts"][da_type].items()])
|
220 |
+
json.dump(dialogues[:10], open(f'dummy_data.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
|
221 |
+
json.dump(ontology, open(f'{new_data_dir}/ontology.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
|
222 |
+
json.dump(dialogues, open(f'{new_data_dir}/dialogues.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
|
223 |
+
with ZipFile('data.zip', 'w', ZIP_DEFLATED) as zf:
|
224 |
+
for filename in os.listdir(new_data_dir):
|
225 |
+
zf.write(f'{new_data_dir}/{filename}')
|
226 |
+
rmtree(original_data_dir)
|
227 |
+
rmtree(new_data_dir)
|
228 |
+
return dialogues, ontology
|
229 |
+
|
230 |
+
|
231 |
+
if __name__ == '__main__':
|
232 |
+
preprocess()
|