import json import datasets _DESCRIPTION = """\ LEGAR_BENCH is the first large-scale Korean LCR benchmark, covering 411 diverse crime types in queries over 1.2M legal cases. """ _HOMEPAGE = "https://huggingface.co/datasets/Chaeeun-Kim/LEGAR_BENCH" _LICENSE = "Apache 2.0" _URLS = { "standard": "data/standard_train.jsonl", "stricter": "data/stricter_train.jsonl", "stricter_by_difficulty": "data/stricter_by_difficulty_train.jsonl", } class LegarBench(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig( name="standard", version=VERSION, description="Standard version of LEGAR BENCH", ), datasets.BuilderConfig( name="stricter", version=VERSION, description="Stricter version of LEGAR BENCH", ), datasets.BuilderConfig( name="stricter_by_difficulty", version=VERSION, description="Stricter version organized by difficulty", ), ] DEFAULT_CONFIG_NAME = "standard" def _info(self): features = datasets.Features({ "id": datasets.Value("int64"), "target_category": datasets.Value("string"), "category": datasets.Value("string"), "question": datasets.Value("string"), "question_id": datasets.Value("string"), "answer": datasets.Sequence(datasets.Value("string")), "evidence_id": datasets.Sequence(datasets.Value("string")), "difficulty": datasets.Value("string"), }) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, ) def _split_generators(self, dl_manager): url = _URLS[self.config.name] data_file = dl_manager.download(url) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": data_file, }, ), ] def _generate_examples(self, filepath): with open(filepath, encoding="utf-8") as f: for key, line in enumerate(f): data = json.loads(line) yield key, { "id": int(data.get("id", 0)), "target_category": str(data.get("target_category", "")), "category": self._process_category(data.get("category", {})), "question": str(data.get("question", "")), "question_id": str(data.get("question_id", "")), "answer": self._process_list_field(data.get("answer", [])), "evidence_id": self._process_list_field(data.get("evidence_id", [])), "difficulty": str(data.get("difficulty", "")), } def _process_category(self, category): if isinstance(category, dict): return json.dumps(category, ensure_ascii=False) return str(category) def _process_list_field(self, field): if field is None: return [] return [str(item) if item is not None else "" for item in field]