Datasets:
Commit
•
737e980
1
Parent(s):
b966160
Convert dataset to Parquet (#3)
Browse files- Convert dataset to Parquet (b65b9bb87a0412eb94a659660819060825e74b9f)
- Delete loading script (be547ddd15ecb44291cdef011cdd4d7b99afea54)
- Delete data file (d0ed8f9a70f6b49e86c8f3f1f59f75d3fddf9a00)
- Delete data file (8373177a94199e0dfb50c480f3cef49aae9a88b0)
- Delete legacy dataset_infos.json (68b1bd56ab0e54d5bea449ca5ee170f2aef36ca7)
- Delete data file (fe3d48f37d472dc9dac1c013f0b78106feeee768)
- Delete data file (9df429a31da8e5801d1383fbe98b946003e53339)
- Delete data file (2b0d800a4d17e1448abafa715b7f1a1d63a35cde)
- Delete data file (0e204fafddc7d368bd91417b08588d402aa93547)
Co-authored-by: Albert Villanova <[email protected]>
- ASCEND.py +0 -139
- ASCEND.py.lock +0 -0
- README.md +45 -0
- dataset_infos.json +0 -1
- waves.tar.bz2 → main/test-00000-of-00001.parquet +2 -2
- main/train-00000-of-00003.parquet +3 -0
- main/train-00001-of-00003.parquet +3 -0
- main/train-00002-of-00003.parquet +3 -0
- main/validation-00000-of-00001.parquet +3 -0
- speakers.csv +0 -24
- test_metadata.csv +0 -0
- train_metadata.csv +0 -0
- validation_metadata.csv +0 -0
ASCEND.py
DELETED
@@ -1,139 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
""" Common Voice Dataset"""
|
16 |
-
|
17 |
-
from datasets import AutomaticSpeechRecognition
|
18 |
-
|
19 |
-
|
20 |
-
import datasets
|
21 |
-
import os
|
22 |
-
import pandas as pd
|
23 |
-
|
24 |
-
|
25 |
-
_CITATION = """\
|
26 |
-
@inproceedings{lovenia2021ascend,
|
27 |
-
title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},
|
28 |
-
author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},
|
29 |
-
booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},
|
30 |
-
publisher = {European Language Resources Association},
|
31 |
-
year = {2022},
|
32 |
-
pages = {}
|
33 |
-
}
|
34 |
-
"""
|
35 |
-
|
36 |
-
_DESCRIPTION = """\
|
37 |
-
ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.
|
38 |
-
"""
|
39 |
-
|
40 |
-
_HOMEPAGE = "https://huggingface.co/datasets/CAiRE/ASCEND"
|
41 |
-
|
42 |
-
_URL = "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/"
|
43 |
-
_URLS = {
|
44 |
-
"train": _URL + "train_metadata.csv",
|
45 |
-
"test": _URL + "test_metadata.csv",
|
46 |
-
"validation": _URL + "validation_metadata.csv",
|
47 |
-
"waves": "https://huggingface.co/datasets/CAiRE/ASCEND/resolve/main/waves.tar.bz2",
|
48 |
-
}
|
49 |
-
|
50 |
-
|
51 |
-
class ASCENDConfig(datasets.BuilderConfig):
|
52 |
-
"""BuilderConfig for ASCEND."""
|
53 |
-
|
54 |
-
def __init__(self, name="main", **kwargs):
|
55 |
-
"""
|
56 |
-
Args:
|
57 |
-
**kwargs: keyword arguments forwarded to super.
|
58 |
-
"""
|
59 |
-
super(ASCENDConfig, self).__init__(name, **kwargs)
|
60 |
-
|
61 |
-
|
62 |
-
class ASCEND(datasets.GeneratorBasedBuilder):
|
63 |
-
"""ASCEND: A Spontaneous Chinese-English Dataset for code-switching. Snapshot date: 5 January 2022."""
|
64 |
-
|
65 |
-
BUILDER_CONFIGS = [
|
66 |
-
ASCENDConfig(
|
67 |
-
name="main",
|
68 |
-
version=datasets.Version("1.0.0", ""),
|
69 |
-
description=_DESCRIPTION,
|
70 |
-
)
|
71 |
-
]
|
72 |
-
|
73 |
-
def _info(self):
|
74 |
-
features = datasets.Features(
|
75 |
-
{
|
76 |
-
"id": datasets.Value("string"),
|
77 |
-
"path": datasets.Value("string"),
|
78 |
-
"audio": datasets.Audio(sampling_rate=16_000),
|
79 |
-
"transcription": datasets.Value("string"),
|
80 |
-
"duration": datasets.Value("float32"),
|
81 |
-
"language": datasets.Value("string"),
|
82 |
-
"original_speaker_id": datasets.Value("int64"),
|
83 |
-
"session_id": datasets.Value("int64"),
|
84 |
-
"topic": datasets.Value("string"),
|
85 |
-
}
|
86 |
-
)
|
87 |
-
return datasets.DatasetInfo(
|
88 |
-
description=_DESCRIPTION,
|
89 |
-
features=features,
|
90 |
-
supervised_keys=None,
|
91 |
-
homepage=_HOMEPAGE,
|
92 |
-
citation=_CITATION,
|
93 |
-
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="transcription")],
|
94 |
-
)
|
95 |
-
|
96 |
-
def _split_generators(self, dl_manager):
|
97 |
-
downloaded_files = dl_manager.download_and_extract(_URLS)
|
98 |
-
|
99 |
-
return [
|
100 |
-
datasets.SplitGenerator(
|
101 |
-
name=datasets.Split.TRAIN,
|
102 |
-
gen_kwargs={
|
103 |
-
"metadata_path": downloaded_files["train"],
|
104 |
-
"wave_path": downloaded_files["waves"],
|
105 |
-
},
|
106 |
-
),
|
107 |
-
datasets.SplitGenerator(
|
108 |
-
name=datasets.Split.TEST,
|
109 |
-
gen_kwargs={
|
110 |
-
"metadata_path": downloaded_files["test"],
|
111 |
-
"wave_path": downloaded_files["waves"],
|
112 |
-
},
|
113 |
-
),
|
114 |
-
datasets.SplitGenerator(
|
115 |
-
name=datasets.Split.VALIDATION,
|
116 |
-
gen_kwargs={
|
117 |
-
"metadata_path": downloaded_files["validation"],
|
118 |
-
"wave_path": downloaded_files["waves"],
|
119 |
-
},
|
120 |
-
),
|
121 |
-
]
|
122 |
-
|
123 |
-
def _generate_examples(self, metadata_path, wave_path):
|
124 |
-
print(metadata_path)
|
125 |
-
metadata_df = pd.read_csv(metadata_path)
|
126 |
-
|
127 |
-
for index, row in metadata_df.iterrows():
|
128 |
-
example = {
|
129 |
-
"id": str(index).zfill(5),
|
130 |
-
"path": os.path.join(wave_path, row["file_name"]),
|
131 |
-
"audio": os.path.join(wave_path, row["file_name"]),
|
132 |
-
"transcription": row["transcription"],
|
133 |
-
"duration": row["duration"],
|
134 |
-
"language": row["language"],
|
135 |
-
"original_speaker_id": row["original_speaker_id"],
|
136 |
-
"session_id": row["session_id"],
|
137 |
-
"topic": row["topic"],
|
138 |
-
}
|
139 |
-
yield index, example
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ASCEND.py.lock
DELETED
File without changes
|
README.md
CHANGED
@@ -22,6 +22,51 @@ pretty_name: 'ASCEND: A Spontaneous Chinese-English Dataset for Code-switching i
|
|
22 |
tags:
|
23 |
- speech-recognition
|
24 |
- code-switching
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
---
|
26 |
|
27 |
# Dataset Card for ASCEND
|
|
|
22 |
tags:
|
23 |
- speech-recognition
|
24 |
- code-switching
|
25 |
+
dataset_info:
|
26 |
+
config_name: main
|
27 |
+
features:
|
28 |
+
- name: id
|
29 |
+
dtype: string
|
30 |
+
- name: path
|
31 |
+
dtype: string
|
32 |
+
- name: audio
|
33 |
+
dtype:
|
34 |
+
audio:
|
35 |
+
sampling_rate: 16000
|
36 |
+
- name: transcription
|
37 |
+
dtype: string
|
38 |
+
- name: duration
|
39 |
+
dtype: float32
|
40 |
+
- name: language
|
41 |
+
dtype: string
|
42 |
+
- name: original_speaker_id
|
43 |
+
dtype: int64
|
44 |
+
- name: session_id
|
45 |
+
dtype: int64
|
46 |
+
- name: topic
|
47 |
+
dtype: string
|
48 |
+
splits:
|
49 |
+
- name: train
|
50 |
+
num_bytes: 1014573740.14
|
51 |
+
num_examples: 9869
|
52 |
+
- name: test
|
53 |
+
num_bytes: 106171230.135
|
54 |
+
num_examples: 1315
|
55 |
+
- name: validation
|
56 |
+
num_bytes: 106772517.43
|
57 |
+
num_examples: 1130
|
58 |
+
download_size: 1223536062
|
59 |
+
dataset_size: 1227517487.7050002
|
60 |
+
configs:
|
61 |
+
- config_name: main
|
62 |
+
data_files:
|
63 |
+
- split: train
|
64 |
+
path: main/train-*
|
65 |
+
- split: test
|
66 |
+
path: main/test-*
|
67 |
+
- split: validation
|
68 |
+
path: main/validation-*
|
69 |
+
default: true
|
70 |
---
|
71 |
|
72 |
# Dataset Card for ASCEND
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"train": {"description": "ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.\n", "citation": "@inproceedings{lovenia2021ascend,\n title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},\n author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},\n booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},\n publisher = {European Language Resources Association},\n year = {2022},\n pages = {}\n}\n", "homepage": "https://huggingface.co/datasets/CAiRE/ASCEND", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "path": {"dtype": "string", "id": null, "_type": "Value"}, "audio": {"sampling_rate": 16000, "mono": true, "decode": true, "id": null, "_type": "Audio"}, "transcription": {"dtype": "string", "id": null, "_type": "Value"}, "duration": {"dtype": "float32", "id": null, "_type": "Value"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "original_speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "session_id": {"dtype": "int64", "id": null, "_type": "Value"}, "topic": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "automatic-speech-recognition", "audio_column": "audio", "transcription_column": "transcription"}], "builder_name": "ascend", "config_name": "train", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4316724, "num_examples": 9869, "dataset_name": "ascend"}, "test": {"name": "test", "num_bytes": 559170, "num_examples": 1315, "dataset_name": "ascend"}, "validation": {"name": "validation", "num_bytes": 489562, "num_examples": 1130, "dataset_name": "ascend"}}, "download_checksums": {"https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/train_metadata.csv": {"num_bytes": 1081181, "checksum": "4cbdf90fe9bf53640bfc285e2539b468a6e412daeb17c36a1b5da478cd9f5b29"}, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/test_metadata.csv": {"num_bytes": 127658, "checksum": "15689bc1c1a0bc29b250f63221576392b627da9cc1d80e51bb1a422118b9732c"}, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/validation_metadata.csv": {"num_bytes": 118552, "checksum": "6e53e362991b23ffa49ed991c6062a51d8f286747f341e566c897c02bee72459"}, "https://huggingface.co/datasets/CAiRE/ASCEND/resolve/main/waves.tar.bz2": {"num_bytes": 929707032, "checksum": "b35cc295f1310535a8e250d534aee0adeb90bccbc027a442cdbef81146894529"}}, "download_size": 931034423, "post_processing_size": null, "dataset_size": 5365456, "size_in_bytes": 936399879}, "validation": {"description": "ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.\n", "citation": "@inproceedings{lovenia2021ascend,\n title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},\n author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},\n booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},\n publisher = {European Language Resources Association},\n year = {2022},\n pages = {}\n}\n", "homepage": "https://huggingface.co/datasets/CAiRE/ASCEND", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "path": {"dtype": "string", "id": null, "_type": "Value"}, "audio": {"sampling_rate": 16000, "mono": true, "decode": true, "id": null, "_type": "Audio"}, "transcription": {"dtype": "string", "id": null, "_type": "Value"}, "duration": {"dtype": "float32", "id": null, "_type": "Value"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "original_speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "session_id": {"dtype": "int64", "id": null, "_type": "Value"}, "topic": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "automatic-speech-recognition", "audio_column": "audio", "transcription_column": "transcription"}], "builder_name": "ascend", "config_name": "validation", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4316724, "num_examples": 9869, "dataset_name": "ascend"}, "test": {"name": "test", "num_bytes": 559170, "num_examples": 1315, "dataset_name": "ascend"}, "validation": {"name": "validation", "num_bytes": 489562, "num_examples": 1130, "dataset_name": "ascend"}}, "download_checksums": {"https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/train_metadata.csv": {"num_bytes": 1081181, "checksum": "4cbdf90fe9bf53640bfc285e2539b468a6e412daeb17c36a1b5da478cd9f5b29"}, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/test_metadata.csv": {"num_bytes": 127658, "checksum": "15689bc1c1a0bc29b250f63221576392b627da9cc1d80e51bb1a422118b9732c"}, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/validation_metadata.csv": {"num_bytes": 118552, "checksum": "6e53e362991b23ffa49ed991c6062a51d8f286747f341e566c897c02bee72459"}, "https://huggingface.co/datasets/CAiRE/ASCEND/resolve/main/waves.tar.bz2": {"num_bytes": 929707032, "checksum": "b35cc295f1310535a8e250d534aee0adeb90bccbc027a442cdbef81146894529"}}, "download_size": 931034423, "post_processing_size": null, "dataset_size": 5365456, "size_in_bytes": 936399879}, "test": {"description": "ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.\n", "citation": "@inproceedings{lovenia2021ascend,\n title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},\n author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},\n booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},\n publisher = {European Language Resources Association},\n year = {2022},\n pages = {}\n}\n", "homepage": "https://huggingface.co/datasets/CAiRE/ASCEND", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "path": {"dtype": "string", "id": null, "_type": "Value"}, "audio": {"sampling_rate": 16000, "mono": true, "decode": true, "id": null, "_type": "Audio"}, "transcription": {"dtype": "string", "id": null, "_type": "Value"}, "duration": {"dtype": "float32", "id": null, "_type": "Value"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "original_speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "session_id": {"dtype": "int64", "id": null, "_type": "Value"}, "topic": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "automatic-speech-recognition", "audio_column": "audio", "transcription_column": "transcription"}], "builder_name": "ascend", "config_name": "test", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4316724, "num_examples": 9869, "dataset_name": "ascend"}, "test": {"name": "test", "num_bytes": 559170, "num_examples": 1315, "dataset_name": "ascend"}, "validation": {"name": "validation", "num_bytes": 489562, "num_examples": 1130, "dataset_name": "ascend"}}, "download_checksums": {"https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/train_metadata.csv": {"num_bytes": 1081181, "checksum": "4cbdf90fe9bf53640bfc285e2539b468a6e412daeb17c36a1b5da478cd9f5b29"}, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/test_metadata.csv": {"num_bytes": 127658, "checksum": "15689bc1c1a0bc29b250f63221576392b627da9cc1d80e51bb1a422118b9732c"}, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/validation_metadata.csv": {"num_bytes": 118552, "checksum": "6e53e362991b23ffa49ed991c6062a51d8f286747f341e566c897c02bee72459"}, "https://huggingface.co/datasets/CAiRE/ASCEND/resolve/main/waves.tar.bz2": {"num_bytes": 929707032, "checksum": "b35cc295f1310535a8e250d534aee0adeb90bccbc027a442cdbef81146894529"}}, "download_size": 931034423, "post_processing_size": null, "dataset_size": 5365456, "size_in_bytes": 936399879}}
|
|
|
|
waves.tar.bz2 → main/test-00000-of-00001.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a4c81d2b5ed6124f052089a695972808c16e0ce0c365ec9773c5d1a8fcf043a7
|
3 |
+
size 105756434
|
main/train-00000-of-00003.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d66ba76f324e0711b779cfb01ee4e772a24a929e1d77a2063cde0506f75976f
|
3 |
+
size 316735328
|
main/train-00001-of-00003.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:569f84f771c3637ca8535bd35e10e62feed2c240833534711909a9c04f51e589
|
3 |
+
size 366824932
|
main/train-00002-of-00003.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa76b7ef4a74ff111fd1d2573d0b69e6b6f901df6054618d8e5658a7a394523e
|
3 |
+
size 327687102
|
main/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3bdec53d2abfd3dd4f0d86a6df4e27e60f20660edc9b66055ae0ef8ec05cf7e2
|
3 |
+
size 106532266
|
speakers.csv
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
speaker_id,age,gender,split,years_in_english_study,english_score
|
2 |
-
1,23,female,train,17,6
|
3 |
-
2,22,male,train,13,6
|
4 |
-
3,25,male,test,15,6
|
5 |
-
4,24,male,train,10,7.5
|
6 |
-
5,24,female,train,12,7
|
7 |
-
6,30,female,train,12,7
|
8 |
-
7,23,female,val,17,7
|
9 |
-
8,23,female,train,15,6
|
10 |
-
9,27,male,train,12,6
|
11 |
-
10,23,male,train,12,6
|
12 |
-
11,23,female,train,16,8
|
13 |
-
12,23,male,val,10,5.5
|
14 |
-
13,23,female,train,16,7
|
15 |
-
14,22,female,train,12,6.5
|
16 |
-
15,19,female,train,8,7
|
17 |
-
16,26,male,train,15,6.5
|
18 |
-
17,24,female,test,11,6.5
|
19 |
-
18,23,male,train,5,6.5
|
20 |
-
19,26,male,train,16,7
|
21 |
-
20,26,female,val,18,7.5
|
22 |
-
21,23,female,train,15,6.5
|
23 |
-
24,27,male,train,17,6
|
24 |
-
26,23,female,train,10,7
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test_metadata.csv
DELETED
The diff for this file is too large to render.
See raw diff
|
|
train_metadata.csv
DELETED
The diff for this file is too large to render.
See raw diff
|
|
validation_metadata.csv
DELETED
The diff for this file is too large to render.
See raw diff
|
|