File size: 2,359 Bytes
a1dd698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5b3dba
 
 
 
 
a1dd698
a5b3dba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
dataset_info:
  features:
  - name: asin
    dtype: string
  - name: title
    dtype: string
  - name: image
    dtype: image
  - name: categories
    sequence: string
  - name: description
    dtype: string
  - name: features
    sequence: string
  - name: overviewFeatures
    struct:
    - name: Dimensions de l'article L x L x H
      dtype: string
    - name: Marque
      dtype: string
    - name: Poids de l'article
      dtype: string
  - name: averageRating
    dtype: string
  - name: ratingCount
    dtype: string
  - name: ratingDist
    struct:
    - name: '1'
      dtype: string
    - name: '2'
      dtype: string
    - name: '3'
      dtype: string
    - name: '4'
      dtype: string
    - name: '5'
      dtype: string
  - name: price
    dtype: string
  - name: related
    struct:
    - name: alsoBought
      sequence: string
    - name: alsoViewed
      sequence: string
    - name: boughtTogether
      sequence: string
    - name: compared
      sequence: 'null'
    - name: sponsored
      sequence: string
  - name: productDetails
    struct:
    - name: dummy
      dtype: 'null'
  - name: sellerPage
    dtype: string
  - name: amazon_badge
    dtype: string
  splits:
  - name: train
    num_bytes: 1722102154.0
    num_examples: 3888
  download_size: 1721187321
  dataset_size: 1722102154.0
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
task_categories:
- text-classification
- text-retrieval
language:
- fra
---

## Description
Cleaned version of the `Movies and TV` subset (`metadata` folder) of [XMRec dataset](https://xmrec.github.io/data/fr/).   
In particular, we have made the images available as PILs.

Possible use cases are :
- text classification, using the `categories` column as a label
- product recommendation using the `related` column
- hybrid text/image search (cf. [this Jina.ai blog post](https://jina.ai/news/hype-and-hybrids-multimodal-search-means-more-than-keywords-and-vectors-2/))


## Original paper citation
```
@inproceedings{bonab2021crossmarket,
	author = {Bonab, Hamed and Aliannejadi, Mohammad and Vardasbi, Ali and Kanoulas, Evangelos and Allan, James},
	booktitle = {Proceedings of the 30th ACM International Conference on Information \& Knowledge Management},
	publisher = {ACM},
	title = {Cross-Market Product Recommendation},
	year = {2021}}
```