--- license: mit size_categories: - 10K3: A self-supervised multimodal model for astronomy](https://arxiv.org/abs/2411.08842) - Code Repository: [GitHub: AstroM3](https://github.com/MeriDK/AstroM3/) - Original Data: [AstroMLCore/AstroM3Dataset](https://huggingface.co/datasets/AstroMLCore/AstroM3Dataset/) **Note:** The processed dataset `AstroM3Processed` is created from the original dataset `AstroM3Dataset` by using [preprocess.py](https://huggingface.co/datasets/AstroMLCore/AstroM3Dataset/blob/main/preprocess.py) ## Subsets and Seeds AstroM3Dataset is available in different subset sizes: - `full`: Entire dataset - `sub50`: 50% subset - `sub25`: 25% subset - `sub10`: 10% subset Each subset is sampled from the respective train, validation, and test splits of the full dataset. For reproducibility, each subset is provided with different random seeds: - `42`, `66`, `0`, `12`, `123` ## Usage To load the dataset using the Hugging Face `datasets` library, specify the name in the format "{subset}_{seed}". For example: ```python from datasets import load_dataset # Load the full dataset with seed 42 dataset = load_dataset("AstroMLCore/AstroM3Processed", name="full_42") # Load the 25% subset sampled using seed 123 dataset = load_dataset("AstroMLCore/AstroM3Processed", name="sub25_123") ``` --- ## Citation 🤗 If you find this dataset usefull, please cite our paper 🤗 ```bibtex @article{rizhko2024astrom, title={AstroM $\^{} 3$: A self-supervised multimodal model for astronomy}, author={Rizhko, Mariia and Bloom, Joshua S}, journal={arXiv preprint arXiv:2411.08842}, year={2024} } ``` ## References 1. Shappee, B. J., Prieto, J. L., Grupe, D., et al. 2014, ApJ, 788, 48, doi: 10.1088/0004-637X/788/1/48 2. Jayasinghe, T., Stanek, K. Z., Kochanek, C. S., et al. 2019, MNRAS, 486, 1907, doi: 10.1093/mnras/stz844 3. Cui, X.-Q., Zhao, Y.-H., Chu, Y.-Q., et al. 2012, Research in Astronomy and Astrophysics, 12, 1197, doi: 10.1088/1674-4527/12/9/003 4. Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868, doi: 10.1088/0004-6256/140/6/1868 5. Morrissey, P., Conrow, T., Barlow, T. A., et al. 2007, ApJS, 173, 682, doi: 10.1086/520512 6. Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163, doi: 10.1086/498708 7. Gaia Collaboration, Brown, A. G. A., et al. 2021, AAP, 649, A1, doi: 10.1051/0004-6361/202039657