import os from io import BytesIO from pathlib import Path import datasets import pandas as pd import numpy as np import json from astropy.io import fits from utils.parallelzipfile import ParallelZipFile as ZipFile _DESCRIPTION = ( "AstroM3 is a time-series astronomy dataset containing photometry, spectra, " "and metadata features for variable stars. The dataset includes multiple " "subsets (full, sub10, sub25, sub50) and supports different random seeds (42, 66, 0, 12, 123). " "Each sample consists of:\n" "- **Photometry**: Light curve data of shape `(N, 3)` (time, flux, flux_error).\n" "- **Spectra**: Spectral observations of shape `(M, 3)` (wavelength, flux, flux_error).\n" "- **Metadata**: Auxiliary features of shape `(25,)`.\n" "- **Label**: The class name as a string." ) _HOMEPAGE = "https://huggingface.co/datasets/AstroM3" _LICENSE = "CC BY 4.0" _URL = "https://huggingface.co/datasets/AstroM3" _VERSION = datasets.Version("1.0.0") _CITATION = """ @article{AstroM3, title={AstroM3: A Multi-Modal Astronomy Dataset}, author={Your Name}, year={2025}, journal={AstroML Conference} } """ class AstroM3Dataset(datasets.GeneratorBasedBuilder): """Hugging Face dataset for AstroM3 with configurable subsets and seeds.""" DEFAULT_CONFIG_NAME = "full_42" BUILDER_CONFIGS = [ datasets.BuilderConfig( name=f"{sub}_{seed}", version=_VERSION ) for sub in ["full", "sub10", "sub25", "sub50"] for seed in [42, 66, 0, 12, 123] ] def __init__(self, **kwargs): super().__init__(**kwargs) # Auto-detect dataset location: use current working directory if not hasattr(self.config, "data_dir") or self.config.data_dir is None: self.config.data_dir = Path(os.getcwd()).resolve() print(f"Using dataset location: {self.config.data_dir}") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "photometry": datasets.Sequence(datasets.Sequence(datasets.Value("float32"), length=3)), "spectra": datasets.Sequence(datasets.Sequence(datasets.Value("float32"), length=3)), "metadata": datasets.Sequence(datasets.Value("float32"), length=25), "label": datasets.Value("string"), } ), supervised_keys=("photometry", "label"), homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators for train, val, and test.""" self.config.data_dir = Path(self.config.data_dir) sub, seed = self.config.name.split("_") data_root = self.config.data_dir / "splits" / sub / seed info_path = data_root / "info.json" if not info_path.exists(): raise FileNotFoundError(f"Missing info.json file: {info_path}") with open(info_path, "r") as f: self.dataset_info = json.load(f) # Init reader for photometry self.reader_v = ZipFile(Path(self.config.data_dir) / 'asassnvarlc_vband_complete.zip') return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_root / "train.csv"} ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_root / "val.csv"} ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": data_root / "test.csv"} ), ] def _get_photometry(self, file_name): csv = BytesIO() file_name = file_name.replace(' ', '') data_path = f'vardb_files/{file_name}.dat' csv.write(self.reader_v.read(data_path)) csv.seek(0) lc = pd.read_csv(csv, sep=r'\s+', skiprows=2, names=['HJD', 'MAG', 'MAG_ERR', 'FLUX', 'FLUX_ERR'], dtype={'HJD': float, 'MAG': float, 'MAG_ERR': float, 'FLUX': float, 'FLUX_ERR': float}) return lc[['HJD', 'FLUX', 'FLUX_ERR']].values @staticmethod def _get_spectra(file_name): hdulist = fits.open(file_name) len_list = len(hdulist) if len_list == 1: head = hdulist[0].header scidata = hdulist[0].data coeff0 = head['COEFF0'] coeff1 = head['COEFF1'] pixel_num = head['NAXIS1'] specflux = scidata[0,] ivar = scidata[1,] wavelength = np.linspace(0, pixel_num - 1, pixel_num) wavelength = np.power(10, (coeff0 + wavelength * coeff1)) hdulist.close() elif len_list == 2: head = hdulist[0].header scidata = hdulist[1].data wavelength = scidata[0][2] ivar = scidata[0][1] specflux = scidata[0][0] else: raise ValueError(f'Wrong number of fits files. {len_list} should be 1 or 2') return np.vstack((wavelength, specflux, ivar)).T def _generate_examples(self, filepath): """Yields examples from a CSV file containing photometry, spectra, metadata, and labels.""" if not filepath.exists(): raise FileNotFoundError(f"Missing dataset file: {filepath}") df = pd.read_csv(filepath) for idx, row in df.iterrows(): photometry = self._get_photometry(row['name']) spectra = np.zeros((200, 3)) # (None, 3) metadata = np.zeros(25) # (25,) yield idx, { "id": str(row["id"]), "photometry": photometry.tolist(), # Convert back to list for HF compatibility "spectra": spectra.tolist(), "metadata": metadata.tolist(), "label": row["target"], }