Updated loading logic
Browse files- AstroM3Dataset.py +14 -20
 
    	
        AstroM3Dataset.py
    CHANGED
    
    | 
         @@ -112,21 +112,18 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder): 
     | 
|
| 112 | 
         
             
                        "val": f"splits/{sub}/{seed}/val.csv",
         
     | 
| 113 | 
         
             
                        "test": f"splits/{sub}/{seed}/test.csv",
         
     | 
| 114 | 
         
             
                        "info": f"splits/{sub}/{seed}/info.json",
         
     | 
| 115 | 
         
            -
                        "spectra": "spectra.zip"
         
     | 
| 116 | 
         
             
                    }
         
     | 
| 
         | 
|
| 117 | 
         | 
| 118 | 
         
            -
                     
     | 
| 
         | 
|
| 119 | 
         | 
| 120 | 
         
            -
                     
     | 
| 121 | 
         
            -
             
     | 
| 122 | 
         
            -
             
     | 
| 123 | 
         
            -
             
     | 
| 124 | 
         
            -
             
     | 
| 125 | 
         
            -
                     
     | 
| 126 | 
         
            -
                    # spectra_urls = {}
         
     | 
| 127 | 
         
            -
                    # for _, row in df_combined.iterrows():
         
     | 
| 128 | 
         
            -
                    #     spectra_urls[row["spec_filename"]] = f"{_URL}/spectra/{row['target']}/{row['spec_filename']}"
         
     | 
| 129 | 
         
            -
                    # spectra_files = dl_manager.download(spectra_urls)
         
     | 
| 130 | 
         | 
| 131 | 
         
             
                    # Load photometry and init reader
         
     | 
| 132 | 
         
             
                    photometry_path = dl_manager.download(f"photometry.zip")
         
     | 
| 
         @@ -136,27 +133,24 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder): 
     | 
|
| 136 | 
         
             
                        datasets.SplitGenerator(
         
     | 
| 137 | 
         
             
                            name=datasets.Split.TRAIN, gen_kwargs={"csv_path": extracted_path["train"],
         
     | 
| 138 | 
         
             
                                                                   "info_path": extracted_path["info"],
         
     | 
| 139 | 
         
            -
                                                                    
     | 
| 140 | 
         
            -
                                                                   "spectra_path": extracted_path["spectra"],
         
     | 
| 141 | 
         
             
                                                                   "split": "train"}
         
     | 
| 142 | 
         
             
                        ),
         
     | 
| 143 | 
         
             
                        datasets.SplitGenerator(
         
     | 
| 144 | 
         
             
                            name=datasets.Split.VALIDATION, gen_kwargs={"csv_path": extracted_path["val"],
         
     | 
| 145 | 
         
             
                                                                        "info_path": extracted_path["info"],
         
     | 
| 146 | 
         
            -
                                                                         
     | 
| 147 | 
         
            -
                                                                        "spectra_path": extracted_path["spectra"],
         
     | 
| 148 | 
         
             
                                                                        "split": "val"}
         
     | 
| 149 | 
         
             
                        ),
         
     | 
| 150 | 
         
             
                        datasets.SplitGenerator(
         
     | 
| 151 | 
         
             
                            name=datasets.Split.TEST, gen_kwargs={"csv_path": extracted_path["test"],
         
     | 
| 152 | 
         
             
                                                                  "info_path": extracted_path["info"],
         
     | 
| 153 | 
         
            -
                                                                   
     | 
| 154 | 
         
            -
                                                                  "spectra_path": extracted_path["spectra"],
         
     | 
| 155 | 
         
             
                                                                  "split": "test"}
         
     | 
| 156 | 
         
             
                        ),
         
     | 
| 157 | 
         
             
                    ]
         
     | 
| 158 | 
         | 
| 159 | 
         
            -
                def _generate_examples(self, csv_path, info_path,  
     | 
| 160 | 
         
             
                    """Yields examples from a CSV file containing photometry, spectra, metadata, and labels."""
         
     | 
| 161 | 
         | 
| 162 | 
         
             
                    df = pd.read_csv(csv_path)
         
     | 
| 
         @@ -166,7 +160,7 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder): 
     | 
|
| 166 | 
         | 
| 167 | 
         
             
                    for idx, row in df.iterrows():
         
     | 
| 168 | 
         
             
                        photometry = self._get_photometry(row["name"])
         
     | 
| 169 | 
         
            -
                        spectra = self._get_spectra( 
     | 
| 170 | 
         | 
| 171 | 
         
             
                        yield idx, {
         
     | 
| 172 | 
         
             
                            "photometry": photometry,
         
     | 
| 
         | 
|
| 112 | 
         
             
                        "val": f"splits/{sub}/{seed}/val.csv",
         
     | 
| 113 | 
         
             
                        "test": f"splits/{sub}/{seed}/test.csv",
         
     | 
| 114 | 
         
             
                        "info": f"splits/{sub}/{seed}/info.json",
         
     | 
| 
         | 
|
| 115 | 
         
             
                    }
         
     | 
| 116 | 
         
            +
                    extracted_path = dl_manager.download(urls)
         
     | 
| 117 | 
         | 
| 118 | 
         
            +
                    # Load all spectra files
         
     | 
| 119 | 
         
            +
                    spectra_urls = {}
         
     | 
| 120 | 
         | 
| 121 | 
         
            +
                    for split in ("train", "val", "test"):
         
     | 
| 122 | 
         
            +
                        df = pd.read_csv(extracted_path[split])
         
     | 
| 123 | 
         
            +
                        for _, row in df.iterrows():
         
     | 
| 124 | 
         
            +
                            spectra_urls[row["spec_filename"]] = f"spectra/{row['target']}/{row['spec_filename']}"
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                    spectra_files = dl_manager.download(spectra_urls)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 127 | 
         | 
| 128 | 
         
             
                    # Load photometry and init reader
         
     | 
| 129 | 
         
             
                    photometry_path = dl_manager.download(f"photometry.zip")
         
     | 
| 
         | 
|
| 133 | 
         
             
                        datasets.SplitGenerator(
         
     | 
| 134 | 
         
             
                            name=datasets.Split.TRAIN, gen_kwargs={"csv_path": extracted_path["train"],
         
     | 
| 135 | 
         
             
                                                                   "info_path": extracted_path["info"],
         
     | 
| 136 | 
         
            +
                                                                   "spectra_files": spectra_files,
         
     | 
| 
         | 
|
| 137 | 
         
             
                                                                   "split": "train"}
         
     | 
| 138 | 
         
             
                        ),
         
     | 
| 139 | 
         
             
                        datasets.SplitGenerator(
         
     | 
| 140 | 
         
             
                            name=datasets.Split.VALIDATION, gen_kwargs={"csv_path": extracted_path["val"],
         
     | 
| 141 | 
         
             
                                                                        "info_path": extracted_path["info"],
         
     | 
| 142 | 
         
            +
                                                                        "spectra_files": spectra_files,
         
     | 
| 
         | 
|
| 143 | 
         
             
                                                                        "split": "val"}
         
     | 
| 144 | 
         
             
                        ),
         
     | 
| 145 | 
         
             
                        datasets.SplitGenerator(
         
     | 
| 146 | 
         
             
                            name=datasets.Split.TEST, gen_kwargs={"csv_path": extracted_path["test"],
         
     | 
| 147 | 
         
             
                                                                  "info_path": extracted_path["info"],
         
     | 
| 148 | 
         
            +
                                                                  "spectra_files": spectra_files,
         
     | 
| 
         | 
|
| 149 | 
         
             
                                                                  "split": "test"}
         
     | 
| 150 | 
         
             
                        ),
         
     | 
| 151 | 
         
             
                    ]
         
     | 
| 152 | 
         | 
| 153 | 
         
            +
                def _generate_examples(self, csv_path, info_path, spectra_files, split):
         
     | 
| 154 | 
         
             
                    """Yields examples from a CSV file containing photometry, spectra, metadata, and labels."""
         
     | 
| 155 | 
         | 
| 156 | 
         
             
                    df = pd.read_csv(csv_path)
         
     | 
| 
         | 
|
| 160 | 
         | 
| 161 | 
         
             
                    for idx, row in df.iterrows():
         
     | 
| 162 | 
         
             
                        photometry = self._get_photometry(row["name"])
         
     | 
| 163 | 
         
            +
                        spectra = self._get_spectra(spectra_files[row["spec_filename"]])
         
     | 
| 164 | 
         | 
| 165 | 
         
             
                        yield idx, {
         
     | 
| 166 | 
         
             
                            "photometry": photometry,
         
     |