Loading pytorch-gpu/py3/2.1.1 Loading requirement: cuda/11.8.0 nccl/2.18.5-1-cuda cudnn/8.7.0.84-cuda gcc/8.5.0 openmpi/4.1.5-cuda intel-mkl/2020.4 magma/2.7.1-cuda sox/14.4.2 sparsehash/2.0.3 libjpeg-turbo/2.1.3 ffmpeg/4.4.4 + HF_DATASETS_OFFLINE=1 + TRANSFORMERS_OFFLINE=1 + python3 OnlyGeneralTokenizer.py Checking label assignment: Domain: Mathematics Categories: math.DS math.CA Abstract: we prove an inequality for holder continuous differential forms on compact manifolds in which the in... Domain: Computer Science Categories: cs.NE Abstract: when looking for a solution deterministic methods have the enormous advantage that they do find glob... Domain: Physics Categories: physics.hist-ph quant-ph Abstract: maxwells demon was born in and still thrives in modern physics he plays important roles in clarifyin... Domain: Chemistry Categories: nlin.PS Abstract: the modulational instability of two interacting waves in a nonlocal kerrtype medium is considered an... Domain: Statistics Categories: astro-ph stat.ME Abstract: the identification of increasingly smaller signal from objects observed with a nonperfect instrument... Domain: Biology Categories: q-bio.MN cond-mat.stat-mech Abstract: we find that discrete noise of inhibiting signal molecules can greatly delay the extinction of plasm... /linkhome/rech/genrug01/uft12cr/.local/lib/python3.11/site-packages/transformers/tokenization_utils_base.py:2057: FutureWarning: Calling BertTokenizer.from_pretrained() with the path to a single file or url is deprecated and won't be possible anymore in v5. Use a model identifier or the path to a directory instead. warnings.warn( Training with General tokenizer: Vocabulary size: 30522 Could not load pretrained weights from /linkhome/rech/genrug01/uft12cr/bert_Model. Starting with random weights. Error: It looks like the config file at '/linkhome/rech/genrug01/uft12cr/bert_Model/config.json' is not a valid JSON file. Initialized model with vocabulary size: 30522 /gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:172: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead. scaler = amp.GradScaler() Batch 0: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29464 Vocab size: 30522 /gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with amp.autocast(): Batch 100: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29536 Vocab size: 30522 Batch 200: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29536 Vocab size: 30522 Batch 300: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29536 Vocab size: 30522 Batch 400: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29513 Vocab size: 30522 Batch 500: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29413 Vocab size: 30522 Batch 600: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29237 Vocab size: 30522 Batch 700: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29586 Vocab size: 30522 Batch 800: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29221 Vocab size: 30522 Batch 900: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29514 Vocab size: 30522 Epoch 1/3: Val Accuracy: 0.7306, Val F1: 0.6541 Batch 0: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29602 Vocab size: 30522 /gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with amp.autocast(): Batch 100: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29374 Vocab size: 30522 Batch 200: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29601 Vocab size: 30522 Batch 300: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29464 Vocab size: 30522 Batch 400: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29535 Vocab size: 30522 Batch 500: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29464 Vocab size: 30522 Batch 600: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29602 Vocab size: 30522 Batch 700: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29454 Vocab size: 30522 Batch 800: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29280 Vocab size: 30522 Batch 900: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29417 Vocab size: 30522 Epoch 2/3: Val Accuracy: 0.7961, Val F1: 0.7582 Batch 0: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29299 Vocab size: 30522 /gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with amp.autocast(): Batch 100: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29577 Vocab size: 30522 Batch 200: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29536 Vocab size: 30522 Batch 300: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29451 Vocab size: 30522 Batch 400: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29454 Vocab size: 30522 Batch 500: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29532 Vocab size: 30522 Batch 600: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29413 Vocab size: 30522 Batch 700: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29586 Vocab size: 30522 Batch 800: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29280 Vocab size: 30522 Batch 900: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29494 Vocab size: 30522 Epoch 3/3: Val Accuracy: 0.8204, Val F1: 0.7894 Test Results for General tokenizer: Accuracy: 0.8204 F1 Score: 0.7893 AUC-ROC: 0.8693 Class distribution in training set: Class Biology: 439 samples Class Chemistry: 454 samples Class Computer Science: 1358 samples Class Mathematics: 9480 samples Class Physics: 2733 samples Class Statistics: 200 samples