FaheemBEG commited on
Commit
4413204
·
verified ·
1 Parent(s): 6ecacb1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -8,7 +8,7 @@ tags:
8
  - embeddings
9
  - open-data
10
  - government
11
- pretty_name: Travail Emploi website Dataset (French Minister of Labor and Employment)
12
  size_categories:
13
  - 1K<n<10K
14
  license: etalab-2.0
@@ -42,7 +42,7 @@ The dataset is provided in **Parquet format** and includes the following columns
42
  | `context` | `list[str]` | Section names related to the chunk. |
43
  | `text` | `str` | Textual content extracted and chunked from a section of the article. |
44
  | `chunk_text` | `str` | Formated text including `title`, `context`, `introduction` and `text` values for embedding |
45
- | `embeddings` | `str` | Embedding vector of `chunk_text` using `BAAI/bge-m3`, stored as JSON array string. |
46
 
47
  ---
48
  ## 🛠️ Data Processing Methodology
@@ -75,13 +75,13 @@ The Langchain's `RecursiveCharacterTextSplitter` function was used to make these
75
  - `chunk_overlap` = 20
76
  - `length_function` = len
77
 
78
- ### 🧠 3. Embedding Generation
79
 
80
- Each `chunk_text` was embedded using the [**`BAAI/bge-m3`**](https://huggingface.co/BAAI/bge-m3) model. The resulting embedding vector is stored in the `embeddings` column as a **string**, but can easily be parsed back into a `list[float]` or NumPy array.
81
 
82
  ## 📌 Embedding Use Notice
83
 
84
- ⚠️ The `embeddings` column is stored as a **stringified list** of floats (e.g., `"[-0.03062629,-0.017049594,...]"`).
85
  To use it as a vector, you need to parse it into a list of floats or NumPy array. For example, if you want to load the dataset into a dataframe :
86
 
87
  ```python
@@ -89,7 +89,7 @@ import pandas as pd
89
  import json
90
 
91
  df = pd.read_parquet("travail_emploi.parquet")
92
- df["embeddings"] = df["embeddings"].apply(json.loads)
93
  ```
94
 
95
  ## 📚 Source & License
 
8
  - embeddings
9
  - open-data
10
  - government
11
+ pretty_name: French Minister of Labor and Employment's website Dataset (Travail Emploi)
12
  size_categories:
13
  - 1K<n<10K
14
  license: etalab-2.0
 
42
  | `context` | `list[str]` | Section names related to the chunk. |
43
  | `text` | `str` | Textual content extracted and chunked from a section of the article. |
44
  | `chunk_text` | `str` | Formated text including `title`, `context`, `introduction` and `text` values for embedding |
45
+ | `embeddings_bge-m3` | `str` | Embedding vector of `chunk_text` using `BAAI/bge-m3`, stored as JSON array string. |
46
 
47
  ---
48
  ## 🛠️ Data Processing Methodology
 
75
  - `chunk_overlap` = 20
76
  - `length_function` = len
77
 
78
+ ### 🧠 3. Embeddings Generation
79
 
80
+ Each `chunk_text` was embedded using the [**`BAAI/bge-m3`**](https://huggingface.co/BAAI/bge-m3) model. The resulting embedding vector is stored in the `embeddings_bge-m3` column as a **string**, but can easily be parsed back into a `list[float]` or NumPy array.
81
 
82
  ## 📌 Embedding Use Notice
83
 
84
+ ⚠️ The `embeddings_bge-m3` column is stored as a **stringified list** of floats (e.g., `"[-0.03062629,-0.017049594,...]"`).
85
  To use it as a vector, you need to parse it into a list of floats or NumPy array. For example, if you want to load the dataset into a dataframe :
86
 
87
  ```python
 
89
  import json
90
 
91
  df = pd.read_parquet("travail_emploi.parquet")
92
+ df["embeddings_bge-m3"] = df["embeddings_bge-m3"].apply(json.loads)
93
  ```
94
 
95
  ## 📚 Source & License