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Abstract— The use of subword units for language modelling
tasks is widespread. But, Indic languages have a complex
compound script (abugida script), which renders UTF-8-based
subword units inefficient. We explore the use of orthographic
syllables as the basic sub-word unit for Indic languages to be
used for language modelling tasks. We propose Orthographic
Syllable Pair Encoding (OSPE) to encode text data for use in
Large Language Models. The intuition behind this is to use the
natural subword unit in Indic scripts, the Orthographic
Syllable, as the basic subword unit for the model instead of UTF-
8 characters, which do not quite match the phonemic shapes of
Indic languages, leading to the generation of semantically
incorrect characters. We compare OSPE to other subword-
based encoding techniques, and we find that models trained with
data encoded with OSPE outperform the other subword models
on language modelling tasks. For example OSPE showed a 30%
improvement in compression ratio over BPE.

Keywords—Tokenization, Indic
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Languages, Language

. INTRODUCTION

Indic languages, belonging to the Indo-Aryan and
Dravidian language families, are linguistically and culturally
diverse, with a rich history. These languages are primarily
written using abugida scripts, where characters represent
consonant-vowel sequences, forming syllables [1].

Traditional methods for encoding and tokenization of
Indic language text, such as Unicode characters or Byte Pair
Encoding (BPE) [2], face certain challenges. BPE, a
commonly used text compression algorithm, operates on bytes
or characters, which are not ideal for capturing the linguistic
units of Indic languages. Given the nature of abugida scripts,
where characters represent syllables, it becomes necessary to
consider orthographic syllables as subword units for efficient
encoding and tokenization [3].

To address these challenges, Orthographic Syllable Pair
Encoding (OSPE) offers a tailored solution for Indic
languages by incorporating the concept of orthographic
syllables. In OSPE, the text is first segmented into a sequence
of orthographic syllables, representing meaningful linguistic
units. This process, known as orthographic syllabification,
ensures accurate tokenization of Indic language text.

Orthographic syllabification in OSPE is achieved by
utilizing the Unicode character boundaries of different
character classes in Indic scripts. For example, in the
Dravidian language Kannada, specific Unicode ranges are
assigned for vowels, consonants, and other character classes.
Following the rules for syllabifying Indic scripts, as defined
by Ishida and Richard [4], the text can be effectively split into
orthographic syllables.
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To tackle the challenges of encoding and compressing
Indic language text, OSPE extends the BPE algorithm. While
BPE replaces frequently occurring pairs of bytes with a single,
unused byte, OSPE merges orthographic syllables and
sequences of frequently occurring orthographic syllables. By
representing words as sequences of orthographic syllables and
iteratively merging the most frequent pairs and n-grams,
OSPE achieves efficient compression while preserving the
linguistic integrity of the text.

One crucial advantage of OSPE over BPE is that OSPE
ensures the resulting symbols are interpretable as valid
characters in Indic scripts. In contrast, certain n-grams in BPE
may no longer be interpretable as valid character sequences in
Indic languages. For example, the character "<2" in Kannada,

although a valid UTF-8 character, is not considered a
standalone linguistic unit but rather an orthographic syllable.

By addressing the specific requirements of Indic
languages and abugida scripts, OSPE offers an effective
solution for tokenization and compression. The combination
of orthographic syllabification and merging of orthographic
syllables enables the encoding of text in a way that captures
the linguistic structure and statistical properties of Indic
languages. This research paper explores the application of
OSPE and its benefits in the context of Indic languages,
contributing to the advancement of text encoding techniques
for these culturally significant languages.

Il. RELATED WORKS

The topic of variable length encoding is pivotal in the field
of Natural Language Processing (NLP), and various
techniques have been explored to accurately represent
sequences of symbols, each with unique strengths and
limitations. One of the most simplistic yet efficient methods is
one-hot encoding [5] [6], assigning a unique binary vector to
each symbol in the vocabulary, an approach that excels in
memory usage but may fall short in computational efficiency.

A more sophisticated approach is hashing [7], where each
symbol is assigned a unique hash value, permitting indexing
into a fixed-size vector. While this approach offers
computational efficiency with a single hash operation per
symbol, it may induce a higher memory footprint when the
vector size surpasses the vocabulary size. Positional encoding
[8], another variant, encodes the position of each symbol in
the sequence, a vital requirement in tasks such as machine
translation that heavily depend on word order.

More complex techniques include Byte Pair Encoding
(BPE) [2], SentencePiece [9], and WordPiece [10], which
have been designed to address specific challenges in NLP.
BPE is a fusion of one-hot encoding and hashing, where



symbols are divided into byte pairs and encoded using a hash
function. The hash values resulting from this process are then
used to index into a fixed-size vector, striking a balance
between computational efficiency and memory usage.

The SentencePiece and WordPiece techniques segment
text into subwords or "sentence pieces", offering a different
perspective on text representation. SentencePiece stems from
the notion that words may not be the optimal unit for NLP
tasks, while WordPiece, developed specifically for large
language models (LLMSs), hypothesizes that words often
consist of multiple subwords represented using a fixed-size
vector. Both techniques have shown promising results in tasks
such as machine translation and language modeling.

The research by Kunchukuttan and Bhattacharyya, 2016
[11] and its subsequent iterations make significant strides in
this field, proposing orthographic syllables as the primary
subword unit for language modeling tasks. Despite the initial
approach exhibiting significant improvement over other
subword units, it struggled with scripts from the Indo-
Dravidian language families, as it didn't account for the two
extra vowels found in Dravidian languages: € and 6.

Kunchukuttan et al., 2017 [12] proposed a method for
improving machine translation (MT) performance by utilizing
language relatedness. The authors argue that languages that
are related to each other are more likely to share similar
linguistic features, which can be exploited by MT systems to
improve the accuracy of translations. The paper presents a
case study on the use of language relatedness for MT on
languages of the Indian subcontinent. The authors evaluated
their method on a dataset of parallel corpora for Hindi-
English, Bengali-English, and Marathi-English. They found
that their method was able to improve the accuracy of MT for
all three language pairs.

Furthering their research, Kunchukuttan et al., 2018 [13]
introduced the Brahmi-Net system, a neural network-based
transliteration and script conversion system for languages of
the Indian subcontinent. Trained on a large parallel text
corpus, this model learns phonetic and orthographic
similarities between languages, thus enabling accurate
transliteration and script conversion. The model's proficiency
spans a wide variety of languages, including Hindi, Bengali,
Marathi, Tamil, Telugu, Malayalam, and Sanskrit, and it
performs excellently in script conversions between scripts
such as Devanagari, Bengali, Gurmukhi, Tamil, Telugu,
Malayalam, and Kannada. Performance evaluations on
various datasets confirm its superiority over other state-of-the-
art transliteration and script conversion systems, with
commendable generalization abilities for unseen languages.

I1l. ORTHOGRAPHIC SYLLABLES IN INDIC LANGUAGES

Indic scripts are written using a C+V (consonant + vowel)
format, which serves as the fundamental principle of these
scripts [14][15]. In addition to vowels and consonants, Indic
scripts also include vowel modifiers and consonant modifiers.
This combination of elements allows for the formation of
syllables within the script.

By default, the "a" sound follows all consonants in Indic
scripts, but other sounds can be designated using vowel
modifiers. Vowel modifiers allow for the representation of
different vowel sounds following a consonant. The "a"
modifier can be suppressed by using an explicit halanta
character placed at the end of the consonant.

Consonant sounds can be combined or modified using one
or more consonant modifiers. These modifiers alter the
pronunciation or form of the consonant. The valid
orthographic syllables in Indic scripts include various
combinations of characters:

e A vowel: Represents a standalone vowel sound.

e A consonant: Represents a consonant sound
followed by the default "a" vowel sound.

e A consonant + a vowel modifier: Represents a
consonant sound followed by a specific vowel
sound indicated by the modifier.

e A consonant + one or more consonant modifiers:
Represents a consonant sound modified by one or
more consonant modifiers.

e A consonant + a vowel modifier + a consonant
modifier: Represents a consonant sound
modified by both a vowel modifier and a
consonant modifier.

e A consonant + a halanta character: Represents a
consonant sound without the default "a" vowel
sound.

It is important to note that certain combinations are
considered invalid orthographic syllables:

e A vowel modifier on its own: Does not form a
complete syllable.

e A consonant modifier on its own: Does not form
a complete syllable.

Table 1 shows the list of vowels and vowel modifiers for
the Kannada language. Table 2 has examples of valid and
invalid orthographic syllables in the Kannada language. Table
3 shows the tokenization of a word as a sequence of
orthographic syllables compared to other methods.
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TABLE II. EXAMPLES OF VALID AND INVALID ORTHOGRAPHIC

SYLLABLES IN KANNADA

Valid Orthographic
Syllables

Invalid Orthographic
syllables

&9 (Kaa) - Consonant + | <9 (the aa diacritic) -A

vowel modifier vowel modifier on it's own

All consonant modifiers on
their own

& (ka) - Consonant only

3y (kru) - Consonant +

consonant modifier

59, (kka) - Consonant +
vowel modifier +

consonant modifier

¢3 (aa) - Vowel only

TABLE I1I. SAMPLE TOKENIZATION FOR A KANNADA WORD
Unit Tokens Transliteration ‘
Word ©8IaDY | Aramaneyalli
Orthographic | @3 &S | Aramaneyallli
syllable oy ©
Byte 3D I Aramanevyallli

o od oF )

P
Aramane-Palace, alli-in there
Aramaneyalli — In the palace

IV. ORTHOGRAPHIC SYLLABLE PAIR ENCODING

OSPE comprises two phases, orthographic syllabification
and merging of frequently occurring pairs. We modify and use
the BPE algorithm proposes by Gage et al. [16] for encoding.
BPE is a very uncomplicated method of data compression in
which the most common pair of bytes in a sequence are
incrementally replaced with a single, unused byte.. But,
instead of merging bytes) or characters and character
sequences, we merge orthographic syllables and sequences of
frequently occurring Orthographic Syllables

A. Orthographic Syllabification

Orthographic syllabification refers to the process of
splitting the text into a sequence of orthographic syllables. It
is used here to tokenize text into a sequence of orthographic
syllables.

We perform orthographic syllabification using the
Unicode character boundaries of the different character

classes. For example, for the Kannada language, the characters
lying between 0C81 and 0C94 would be vowels, the
characters between 0C95 and 0CB9 would be consonants, and
so on. This method of tokenization works as the different
character sets for Indic languages are in continuous range in
the allocated blocks.

We initialize the current orthographic syllable and then
iterate through the text. The following rules are used to
generate the orthographic syllables:

If the character is a vowel, append to the current syllable,
add the syllable to the vocabulary and reinitialize the current
syllable.

If the character is a consonant, append to the current
syllable and continue.

If the character is a halanta character, append to the current
syllable and continue.

If the character is a vowel diacritic, append to the current
syllable, add the syllable to the vocabulary and reinitialize the
current syllable.

If the character is a number or any other special character,
add the syllable to the vocabulary and reinitialize the current
syllable.

Algorithm 1 is used for orthographic syllabification.

Algorithm 1: Orthographic syllabification

function get_syllables(text):
# initializing the list of syllables
# and the current orthographic syllable
syllableList =[]
os=""
for character in text:
if characterlsVowel:
os = os+character
syllableList.append(os)
os=""
else if characterlsConsonant:
0s = 0s + character;
characterNext = the next character in text
if characterNextlsNotHalanta and
characterNextlsNotDiacratic:
0s = 0s + character
os=""
syllableList.append(os)
if characterNextlsHalanta or characterNextlsDiacratic:

0s = o0s + character



syllableList.append(os)

0s =

return syllableList

B. Merging Orthographic Syllables

We initialize the symbol vocabulary with the vocabulary
of orthographic syllables and represent each word as a
sequence of orthographic syllables. We also include a special
end-of-word symbol to restore the original tokenization. The
orthographic syllable pairs are then iteratively counted, and
the most frequently occurring symbol pairs are merged. Such
a merged pair is now replaced with a new symbol which is an
orthographic syllable n-gram. We subsequently merge the
most frequently occurring n-grams into a single symbol. The
sum of the initial vocabulary size and the number of merge
operations gives the size of the final vocabulary. The pairs that
cross word boundaries are not considered for efficiency. The
algorithm can be applied to the dictionary or the list of tokens
extracted from a text, with each orthographic syllable being
given a weight proportional to its frequency.

Algorithm 2 is used for merging of orthographic syllable
pairs.

Algorithm 1: Merging Orthographic Syllable
Pairs

function getPairs(syllables)
if syllable in self.cache:
return self.cache[syllable]
word = tuple(syllable)

pairs = getPairs(word)

if not pairs:

return syllable

while True:

bigram = min(pairs, key = lambda pair:
ospe_ranks.get(pair, float('inf)))

if bigram not in ospe_ranks:

break

first, second = bigram

new_word = []

i=0

while i < len(word):

try:
j = word.index(first, i)
new_word.extend(wordl[i:j])
=]

except:
new_word.extend(word[i:])

break

if word[i] == first and i < len(word)-1 and word[i+1] ==
second:
new_word.append(first+second)
i+=2
else:
new_word.append(word[i])
i+=1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word ="".join(word)
self.cache[syllable] = word

return word

The main difference between OSPE and other variable
length encoding techniques based on Huffman encoding
algorithms [17] is that our networks can still interpret these
word sequences as subword units. This means they can
produce new words based on these units, even if they aren't
seen during training. OSPE also significantly differs from
BPE because we use orthographic syllables as our subword
unit instead of UTF-8 characters. Each of our symbols would
be interpretable as a valid character in an Indic script, unlike
in BPE, where certain n-grams would no longer be
interpretable as a valid character sequence in an Indic
language. For example the character “<9”, which although a

valid UTF-8 character is not a valid independent linguistic
unit. The figure shows an example of the encoding technique
with the merge operation. This is applicable to open networks
with fixed symbol vocabularies.

For the following sentence, figure 2. shows the merge
operations performed by OSPE.

“2e30D NoB T, TR0 e3 BB BReTR.
TR 0D 9T 2033e ed 200%.”



(Seeteya ganda Raama. Raamanondige seete kaadige
hodalu. Avalondige avalu onde seere oydalu)

(Raama is Seete’s husband. Seete went to the forest with
Raama. She carried one saree with her)
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Figure 1: The OSPE merge operations

V. MODEL TRAINING AND EVALUATION SET Up

A. Evaluation set up

We evaluate OSPE against BPE. We train GPT-2 (117M) on
the CC-100 corpus [18] in the Kannada language for a 70000
steps. The encoder released as a part of the open-sourced GPT-
2 release was used for BPE. The encoder, defined in section 2
above, was used for OSPE.

The hyperparameters and optimizers were adapted from [19].
The Adam optimizer is used for gradient optimization. A
tensor rematerialization framework is used for graph
optimization [20].

B. Evaluation parameters

The encoding technique is evaluated based on its efficiency
and robustness. We use the BLEU benchmark [21] to evaluate
the trained model.

We compare the compression ratio of OSPE with BPE,
orthographic syllable encoding, and sentence piece encoding.
The compression ratio is calculated using equation 1.

Compression ratio
size of the original text file

Size of the encoded file

Equation 1: Evaluation of compression ratio

We propose using a new benchmark, the Efficiency Score to
evaluate the efficiency of the encoding technique. The
Efficiency Scale can be defined as the percentage of valid
tokens generated by the large language model. The higher the
Efficiency Scale score, the better is the model. Equation 2 is
used to measure the efficiency score. The efficiency score is a
measure to verify the semantic correctness of the generated
text.

Efficiency Score
= 100

no.of invalid Tokens
- * 100
total no.of generated tokens

Equation 2: Evaluation of Efficiency Score

VI. RESULTS

A. Compression ratio

Table 4 shows the compression ratios for BPE and OSPE.

TABLE IV. COMPARISON OF THE COMPRESSION RATIOS OF BPE AND
OSPE

BPE OSPE

2.58 3.33

It was observed that OSPE outperformed BPE with respect to
the compression ratio. OSPE returned an average compression
ratio of 3.33 which is 29.4% higher than that of BPE. This also
led to significant reduction in the compute requirements which
will be discussed in the next section

B. Compute requirements

Based on our experiments, we observe that the memory
requirements of OSPE are an average of 8% lesser than that
of BPE in the encoding phase and 10% lesser in the training
phase when compared to BPE. However, large scale studies
on the compute requirements have not been performed.

C. Efficiency score
The efficiency score as proposed in 3.2 is calculated for the

model. A few efficiency scores are given in table 3 for 3
different prompts.

TABLE V. COMPARISON OF THE COMPRESSION RATIOS OF BPE AND
OSPE

Run BPE OSPE

Prompt 1 82.05 97.06

Prompt 2 69.29 84.3

Prompt 3 76.45 90.4

It can be observed that for the same training time and model
prompts, OSPE generates a much lower percentage of invalid
tokens than BPE.

D. Token Count

For the CC-100 dataset, the number of tokens generated by
OSPE and BPE were counted. Table 6, shows the token count
for OSPE and BPE.

TABLE VI. TOKEN COUNT OF OSPE AND BPE

BPE OSPE
2757432944 211191977




It can be observed that OSPE returns approximately 1/12th of
the tokens returned by BPE.

VII. DISCUSSION

OSPE performs much better than other subword-based
encoding techniques as it functions on the level of
orthographic syllables which are a natural linguistic unit for
Indic languages. OOV words can be handled better in OSPE
than in word-level, and morpheme-level encoding techniques,
as the tokenization happens at the sub-word level. OSPE
considers the nature of the Indic scripts during the encoding
phase, leading to more accurate tokens being generated, unlike
other tokenization techniques, which consider UTF-8
characters as the basic subword units. This leads to lesser
incorrect tokens being generated as the smallest token that can
be generated by a model trained on data encoded with OSPE
is an orthographic syllable which is still a discrete
semantically correct unit of the language.

We also observed that OSPE outperforms BPE, on several
counts like the compression ratio, compute costs, efficiency
score and the BLEU scores. We could attribute the higher
compression to the fact that the number of encoded tokens in
OSPE are substantially lesser (1/12) than the number of
encoded tokens in BPE. This is because BPE uses bytes as the
basic subword units while OSPE considers orthographic
syllables as the basic subword unit. It would be important to
note that an orthographic syllable as defined in this work is
several bytes long. Certain orthographic syllables can be as
large as 8 bytes. When used on large datasets, this would lead
to significant compute savings. OSPE based models will also
require shorter training time than other byte-level encoding
techniques as OSPE based models do not have to learn the
nature of the script, as the tokens are already semantically
correct.

VIII.CONCLUSIONS AND FUTURE WORK

In this paper, we propose a new technique for the encoding of
Indic languages. We suggest the use of orthographic syllables,
a variable length, linguistically motivated, approximate
syllable, as a basic subword unit. We also propose the use of
compression through a variant of BPE. OSPE performs much
better for OOV words. The benefits span across different
models and languages. This leads us to explore the use of
OSPE across languages. It also leads us to look into designing
a unified encoder for different Indic languages in the future.

IX. LIMITATIONS

Currently, OSPE requires that for the Indo-Aryan and the
Indo-Dravidian languages character classes be separately
defined. This is because the Unicode blocks for the two
language families have different Unicode ranges for the
different character types — vowels, consonants and diacritics.
These hyperparameters will have to be taken into
consideration while using the encoder.

This study does not perform extensive large-scale
experimentation due to compute and budget limitations. The
technique can be further improved and tested on a more

comprehensive set of Indic Languages to cement its efficacy
further. This study also does not consider the effect of training
corpus size on the model performance.
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