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Abstract— The use of subword units for language modelling 

tasks is widespread. But, Indic languages have a complex 

compound script (abugida script), which renders UTF-8-based 

subword units inefficient. We explore the use of orthographic 

syllables as the basic sub-word unit for Indic languages to be 

used for language modelling tasks. We propose Orthographic 

Syllable Pair Encoding (OSPE) to encode text data for use in 

Large Language Models. The intuition behind this is to use the 

natural subword unit in Indic scripts, the Orthographic 

Syllable, as the basic subword unit for the model instead of UTF-

8 characters, which do not quite match the phonemic shapes of 

Indic languages, leading to the generation of semantically 

incorrect characters. We compare OSPE to other subword-

based encoding techniques, and we find that models trained with 

data encoded with OSPE outperform the other subword models 

on language modelling tasks. For example OSPE showed a 30% 

improvement in compression ratio over BPE. 

Keywords—Tokenization, Indic Languages, Language 

modelling, Large Language Models 

I. INTRODUCTION 

Indic languages, belonging to the Indo-Aryan and 
Dravidian language families, are linguistically and culturally 
diverse, with a rich history. These languages are primarily 
written using abugida scripts, where characters represent 
consonant-vowel sequences, forming syllables [1]. 

Traditional methods for encoding and tokenization of 
Indic language text, such as Unicode characters or Byte Pair 
Encoding (BPE) [2], face certain challenges. BPE, a 
commonly used text compression algorithm, operates on bytes 
or characters, which are not ideal for capturing the linguistic 
units of Indic languages. Given the nature of abugida scripts, 
where characters represent syllables, it becomes necessary to 
consider orthographic syllables as subword units for efficient 
encoding and tokenization [3]. 

To address these challenges, Orthographic Syllable Pair 
Encoding (OSPE) offers a tailored solution for Indic 
languages by incorporating the concept of orthographic 
syllables. In OSPE, the text is first segmented into a sequence 
of orthographic syllables, representing meaningful linguistic 
units. This process, known as orthographic syllabification, 
ensures accurate tokenization of Indic language text. 

Orthographic syllabification in OSPE is achieved by 
utilizing the Unicode character boundaries of different 
character classes in Indic scripts. For example, in the 
Dravidian language Kannada, specific Unicode ranges are 
assigned for vowels, consonants, and other character classes. 
Following the rules for syllabifying Indic scripts, as defined 
by Ishida and Richard [4], the text can be effectively split into 
orthographic syllables. 

To tackle the challenges of encoding and compressing 
Indic language text, OSPE extends the BPE algorithm. While 
BPE replaces frequently occurring pairs of bytes with a single, 
unused byte, OSPE merges orthographic syllables and 
sequences of frequently occurring orthographic syllables. By 
representing words as sequences of orthographic syllables and 
iteratively merging the most frequent pairs and n-grams, 
OSPE achieves efficient compression while preserving the 
linguistic integrity of the text. 

One crucial advantage of OSPE over BPE is that OSPE 
ensures the resulting symbols are interpretable as valid 
characters in Indic scripts. In contrast, certain n-grams in BPE 
may no longer be interpretable as valid character sequences in 

Indic languages. For example, the character "ಾ " in Kannada, 

although a valid UTF-8 character, is not considered a 
standalone linguistic unit but rather an orthographic syllable. 

By addressing the specific requirements of Indic 
languages and abugida scripts, OSPE offers an effective 
solution for tokenization and compression. The combination 
of orthographic syllabification and merging of orthographic 
syllables enables the encoding of text in a way that captures 
the linguistic structure and statistical properties of Indic 
languages. This research paper explores the application of 
OSPE and its benefits in the context of Indic languages, 
contributing to the advancement of text encoding techniques 
for these culturally significant languages. 

II. RELATED WORKS 

The topic of variable length encoding is pivotal in the field 
of Natural Language Processing (NLP), and various 
techniques have been explored to accurately represent 
sequences of symbols, each with unique strengths and 
limitations. One of the most simplistic yet efficient methods is 
one-hot encoding [5] [6], assigning a unique binary vector to 
each symbol in the vocabulary, an approach that excels in 
memory usage but may fall short in computational efficiency. 

A more sophisticated approach is hashing [7], where each 
symbol is assigned a unique hash value, permitting indexing 
into a fixed-size vector. While this approach offers 
computational efficiency with a single hash operation per 
symbol, it may induce a higher memory footprint when the 
vector size surpasses the vocabulary size. Positional encoding 
[8], another variant, encodes the position of each symbol in 
the sequence, a vital requirement in tasks such as machine 
translation that heavily depend on word order. 

More complex techniques include Byte Pair Encoding 
(BPE) [2], SentencePiece [9], and WordPiece [10], which 
have been designed to address specific challenges in NLP. 
BPE is a fusion of one-hot encoding and hashing, where 



 

 

symbols are divided into byte pairs and encoded using a hash 
function. The hash values resulting from this process are then 
used to index into a fixed-size vector, striking a balance 
between computational efficiency and memory usage.  

The SentencePiece and WordPiece techniques segment 
text into subwords or "sentence pieces", offering a different 
perspective on text representation. SentencePiece stems from 
the notion that words may not be the optimal unit for NLP 
tasks, while WordPiece, developed specifically for large 
language models (LLMs), hypothesizes that words often 
consist of multiple subwords represented using a fixed-size 
vector. Both techniques have shown promising results in tasks 
such as machine translation and language modeling. 

The research by Kunchukuttan and Bhattacharyya, 2016 
[11] and its subsequent iterations make significant strides in 
this field, proposing orthographic syllables as the primary 
subword unit for language modeling tasks. Despite the initial 
approach exhibiting significant improvement over other 
subword units, it struggled with scripts from the Indo-
Dravidian language families, as it didn't account for the two 
extra vowels found in Dravidian languages: ē and ō. 

Kunchukuttan et al., 2017 [12] proposed a method for 
improving machine translation (MT) performance by utilizing 
language relatedness. The authors argue that languages that 
are related to each other are more likely to share similar 
linguistic features, which can be exploited by MT systems to 
improve the accuracy of translations. The paper presents a 
case study on the use of language relatedness for MT on 
languages of the Indian subcontinent. The authors evaluated 
their method on a dataset of parallel corpora for Hindi-
English, Bengali-English, and Marathi-English. They found 
that their method was able to improve the accuracy of MT for 
all three language pairs. 

Furthering their research, Kunchukuttan et al., 2018 [13] 
introduced the Brahmi-Net system, a neural network-based 
transliteration and script conversion system for languages of 
the Indian subcontinent. Trained on a large parallel text 
corpus, this model learns phonetic and orthographic 
similarities between languages, thus enabling accurate 
transliteration and script conversion. The model's proficiency 
spans a wide variety of languages, including Hindi, Bengali, 
Marathi, Tamil, Telugu, Malayalam, and Sanskrit, and it 
performs excellently in script conversions between scripts 
such as Devanagari, Bengali, Gurmukhi, Tamil, Telugu, 
Malayalam, and Kannada. Performance evaluations on 
various datasets confirm its superiority over other state-of-the-
art transliteration and script conversion systems, with 
commendable generalization abilities for unseen languages. 

III. ORTHOGRAPHIC SYLLABLES IN INDIC LANGUAGES 

Indic scripts are written using a C+V (consonant + vowel) 
format, which serves as the fundamental principle of these 
scripts [14][15]. In addition to vowels and consonants, Indic 
scripts also include vowel modifiers and consonant modifiers. 
This combination of elements allows for the formation of 
syllables within the script. 

By default, the "a" sound follows all consonants in Indic 
scripts, but other sounds can be designated using vowel 
modifiers. Vowel modifiers allow for the representation of 
different vowel sounds following a consonant. The "a" 
modifier can be suppressed by using an explicit halanta 
character placed at the end of the consonant. 

Consonant sounds can be combined or modified using one 
or more consonant modifiers. These modifiers alter the 
pronunciation or form of the consonant. The valid 
orthographic syllables in Indic scripts include various 
combinations of characters: 

• A vowel: Represents a standalone vowel sound. 

• A consonant: Represents a consonant sound 
followed by the default "a" vowel sound. 

• A consonant + a vowel modifier: Represents a 
consonant sound followed by a specific vowel 
sound indicated by the modifier. 

• A consonant + one or more consonant modifiers: 
Represents a consonant sound modified by one or 
more consonant modifiers. 

• A consonant + a vowel modifier + a consonant 
modifier: Represents a consonant sound 
modified by both a vowel modifier and a 
consonant modifier. 

• A consonant + a halanta character: Represents a 
consonant sound without the default "a" vowel 
sound. 

It is important to note that certain combinations are 
considered invalid orthographic syllables: 

• A vowel modifier on its own: Does not form a 
complete syllable. 

• A consonant modifier on its own: Does not form 
a complete syllable. 

Table 1 shows the list of vowels and vowel modifiers for 
the Kannada language. Table 2 has examples of valid and 
invalid orthographic syllables in the Kannada language. Table 
3 shows the tokenization of a word as a sequence of 
orthographic syllables compared to other methods. 

TABLE I.  VOWELS AND VOWEL MODIFIERS FOR KANNADA 

Le

tte
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Diac

ritic 

ISO no

tation 
Letter 
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itic 

ISO n

otatio
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ಅ none a ಆ ಾ  Ā 

ಇ ಾ  i ಈ ಾ   Ī 

ಉ ಾ  u ಊ ಾ  Ū 

ಋ ಾ  r̥ 

ೠ (o
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e) 

ಾ  r̥̥̄  

ಎ ಾ  e ಏ ಾ   Ē 

ಐ ಾ   ai    

ಒ ಾ   o ಓ ಾ    Ō 
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TABLE II.  EXAMPLES OF VALID AND INVALID ORTHOGRAPHIC 

SYLLABLES IN KANNADA 

Valid Orthographic 
Syllables 

Invalid Orthographic 
syllables 

ಕ  (Kaa) – Consonant + 
vowel modifier 

ಾ  (the aa diacritic) -A 
vowel modifier on it’s own 

ಕ (ka) – Consonant only All consonant modifiers on 
their own 

ಕೃ (kru) – Consonant + 
consonant modifier 

 

ಕ ಾ (kka) – Consonant + 
vowel modifier + 
consonant modifier 

 

ಆ (aa) – Vowel only  

TABLE III.  SAMPLE TOKENIZATION FOR A KANNADA WORD 

Unit Tokens  Transliteration 

Word ಅರಮನೆಯಲ್ಲ ಿ Aramaneyalli 

Orthographic 
syllable 

ಅ ರ ಮ ನೆ 
ಯ ಲ್ಲ ಿ

A ra ma ne ya lli 

Byte ಅ ರ ಮ ನ 
ಾ  ಯ ಲ್ ಲ್ಿ 
ಾ  

A ra ma n e ya l ll i 

Aramane-Palace, alli-in there 

Aramaneyalli – In the palace 

IV. ORTHOGRAPHIC SYLLABLE PAIR ENCODING 

OSPE comprises two phases, orthographic syllabification 
and merging of frequently occurring pairs. We modify and use 
the BPE algorithm proposes by Gage et al. [16] for encoding. 
BPE is a very uncomplicated method of data compression in 
which the most common pair of bytes in a sequence are 
incrementally replaced with a single, unused byte.. But, 
instead of merging bytes) or characters and character 
sequences, we merge orthographic syllables and sequences of 
frequently occurring Orthographic Syllables 

A. Orthographic Syllabification 

Orthographic syllabification refers to the process of 
splitting the text into a sequence of orthographic syllables. It 
is used here to tokenize text into a sequence of orthographic 
syllables. 

We perform orthographic syllabification using the 
Unicode character boundaries of the different character 

classes. For example, for the Kannada language, the characters 
lying between 0C81 and 0C94 would be vowels, the 
characters between 0C95 and 0CB9 would be consonants, and 
so on. This method of tokenization works as the different 
character sets for Indic languages are in continuous range in 
the allocated blocks.  

We initialize the current orthographic syllable and then 
iterate through the text. The following rules are used to 
generate the orthographic syllables: 

If the character is a vowel, append to the current syllable, 
add the syllable to the vocabulary and reinitialize the current 
syllable. 

If the character is a consonant, append to the current 
syllable and continue. 

If the character is a halanta character, append to the current 
syllable and continue. 

If the character is a vowel diacritic, append to the current 
syllable, add the syllable to the vocabulary and reinitialize the 
current syllable. 

If the character is a number or any other special character, 
add the syllable to the vocabulary and reinitialize the current 
syllable. 

Algorithm 1 is used for orthographic syllabification. 

______________________________________ 

Algorithm 1: Orthographic syllabification 

______________________________________ 

    function get_syllables(text): 

    # initializing the list of syllables  

    # and the current orthographic syllable 

    syllableList = [] 

    os = "" 

    for character in text: 

        if characterIsVowel: 

            os = os+character 

            syllableList.append(os) 

            os = "" 

        else if characterIsConsonant: 

            os = os + character; 

            characterNext = the next character in text 

            if characterNextIsNotHalanta and 

characterNextIsNotDiacratic: 

                os = os + character 

                os = "" 

                syllableList.append(os) 

        if characterNextIsHalanta or characterNextIsDiacratic: 

            os = os + character 



 

 

        syllableList.append(os) 

        os = "" 

 

 

    return syllableList 

______________________________________ 

B. Merging Orthographic Syllables 

We initialize the symbol vocabulary with the vocabulary 
of orthographic syllables and represent each word as a 
sequence of orthographic syllables. We also include a special 
end-of-word symbol to restore the original tokenization. The 
orthographic syllable pairs are then iteratively counted, and 
the most frequently occurring symbol pairs are merged. Such 
a merged pair is now replaced with a new symbol which is an 
orthographic syllable n-gram. We subsequently merge the 
most frequently occurring n-grams into a single symbol. The 
sum of the initial vocabulary size and the number of merge 
operations gives the size of the final vocabulary. The pairs that 
cross word boundaries are not considered for efficiency. The 
algorithm can be applied to the dictionary or the list of tokens 
extracted from a text, with each orthographic syllable being 
given a weight proportional to its frequency. 

Algorithm 2 is used for merging of orthographic syllable 
pairs. 

______________________________________ 

Algorithm 1: Merging Orthographic Syllable 

Pairs 

______________________________________ 

function getPairs(syllables) 

    if syllable in self.cache: 

    return self.cache[syllable] 

    word = tuple(syllable) 

    pairs = getPairs(word) 

 

    if not pairs: 

        return syllable 

     

    while True: 

    bigram = min(pairs, key = lambda pair: 

ospe_ranks.get(pair, float('inf'))) 

    if bigram not in ospe_ranks: 

        break 

    first, second = bigram 

    new_word = [] 

    i = 0 

    while i < len(word): 

        try: 

            j = word.index(first, i) 

            new_word.extend(word[i:j]) 

            i = j 

        except: 

            new_word.extend(word[i:]) 

            break 

 

        if word[i] == first and i < len(word)-1 and word[i+1] == 

second: 

            new_word.append(first+second) 

            i += 2 

        else: 

            new_word.append(word[i]) 

            i += 1 

    new_word = tuple(new_word) 

    word = new_word 

    if len(word) == 1: 

        break 

    else: 

        pairs = get_pairs(word) 

word = ' '.join(word) 

self.cache[syllable] = word 

return word 

________________________________________ 
 

The main difference between OSPE and other variable 
length encoding techniques based on Huffman encoding 
algorithms [17] is that our networks can still interpret these 
word sequences as subword units. This means they can 
produce new words based on these units, even if they aren't 
seen during training. OSPE also significantly differs from 
BPE because we use orthographic syllables as our subword 
unit instead of UTF-8 characters. Each of our symbols would 
be interpretable as a valid character in an Indic script, unlike 
in BPE, where certain n-grams would no longer be 
interpretable as a valid character sequence in an Indic 

language. For example the character “ಾ ”, which although a 

valid UTF-8 character is not a valid independent linguistic 
unit. The figure shows an example of the encoding technique 
with the merge operation. This is applicable to open networks 
with fixed symbol vocabularies. 

For the following sentence, figure 2. shows the merge 
operations performed by OSPE. 

“ಸೀತೆಯ ಗಂಡ ರ ಮ. ರ ಮನೆ ಂದಿಗೆ ಸೀತೆ ಕ ಡಿಗೆ ಹೆ ೀದಳು. 
ಅವಳ ೆಂದಿಗೆ ಅವಳು ಒಂದೆೀ ಸೀರೆ ಒಯದಳು.” 



 

 

(Seeteya ganda Raama. Raamanondige seete kaadige 
hodalu. Avalondige avalu onde seere oydalu) 

(Raama is Seete’s husband. Seete went to the forest with 
Raama. She carried one saree with her) 

 
Figure 1: The OSPE merge operations 
 

V. MODEL TRAINING AND EVALUATION SET UP  

A. Evaluation set up 

We evaluate OSPE against BPE. We train GPT-2 (117M) on 

the CC-100 corpus [18] in the Kannada language for a 70000 

steps. The encoder released as a part of the open-sourced GPT-

2 release was used for BPE. The encoder, defined in section 2 

above, was used for OSPE. 

The hyperparameters and optimizers were adapted from [19]. 

The Adam optimizer is used for gradient optimization. A 

tensor rematerialization framework is used for graph 

optimization [20]. 

B. Evaluation parameters 

The encoding technique is evaluated based on its efficiency 

and robustness. We use the BLEU benchmark [21] to evaluate 

the trained model. 

We compare the compression ratio of OSPE with BPE, 

orthographic syllable encoding, and sentence piece encoding. 

The compression ratio is calculated using equation 1. 

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜

=
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑡𝑒𝑥𝑡 𝑓𝑖𝑙𝑒

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑛𝑐𝑜𝑑𝑒𝑑 𝑓𝑖𝑙𝑒
 

Equation 1: Evaluation of compression ratio 

We propose using a new benchmark, the Efficiency Score to 

evaluate the efficiency of the encoding technique. The 

Efficiency Scale can be defined as the percentage of valid 

tokens generated by the large language model. The higher the 

Efficiency Scale score, the better is the model. Equation 2 is 

used to measure the efficiency score. The efficiency score is a 

measure to verify the semantic correctness of the generated 

text. 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑆𝑐𝑜𝑟𝑒 
=  100 

−  
𝑛𝑜. 𝑜𝑓 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 𝑇𝑜𝑘𝑒𝑛𝑠 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑡𝑜𝑘𝑒𝑛𝑠
∗ 100 

Equation 2: Evaluation of Efficiency Score 

VI. RESULTS 

A. Compression ratio 

Table 4 shows the compression ratios for BPE and OSPE. 

TABLE IV.  COMPARISON OF THE COMPRESSION RATIOS OF BPE AND 

OSPE 

BPE OSPE 

2.58 3.33 

It was observed that OSPE outperformed BPE with respect to 

the compression ratio. OSPE returned an average compression 

ratio of 3.33 which is 29.4% higher than that of BPE. This also 

led to significant reduction in the compute requirements which 

will be discussed in the next section 

B. Compute requirements 

Based on our experiments, we observe that the memory 

requirements of OSPE are an average of 8% lesser than that 

of BPE in the encoding phase and 10% lesser in the training 

phase when compared to BPE. However, large scale studies 

on the compute requirements have not been performed. 

C. Efficiency score 

The efficiency score as proposed in 3.2 is calculated for the 

model. A few efficiency scores are given in table 3 for 3 

different prompts.  

TABLE V.  COMPARISON OF THE COMPRESSION RATIOS OF BPE AND 

OSPE 

Run BPE OSPE 

Prompt 1 82.05 97.06 

Prompt 2 69.29 84.3 

Prompt 3 76.45 90.4 

 
It can be observed that for the same training time and model 

prompts, OSPE generates a much lower percentage of invalid 

tokens than BPE.  

D. Token Count 

For the CC-100 dataset, the number of tokens generated by 

OSPE and BPE were counted. Table 6, shows the token count 

for OSPE and BPE. 

TABLE VI.  TOKEN COUNT OF OSPE AND BPE 

BPE OSPE 

2757432944 211191977 



 

 

It can be observed that OSPE returns approximately 1/12th of 

the tokens returned by BPE.  

 

VII. DISCUSSION 

OSPE performs much better than other subword-based 

encoding techniques as it functions on the level of 

orthographic syllables which are a natural linguistic unit for 

Indic languages. OOV words can be handled better in OSPE 

than in word-level, and morpheme-level encoding techniques, 

as the tokenization happens at the sub-word level. OSPE 

considers the nature of the Indic scripts during the encoding 

phase, leading to more accurate tokens being generated, unlike 

other tokenization techniques, which consider UTF-8 

characters as the basic subword units. This leads to lesser 

incorrect tokens being generated as the smallest token that can 

be generated by a model trained on data encoded with OSPE 

is an orthographic syllable which is still a discrete 

semantically correct unit of the language. 

We also observed that OSPE outperforms BPE, on several 

counts like the compression ratio, compute costs, efficiency 

score and the BLEU scores. We could attribute the higher 

compression to the fact that the number of encoded tokens in 

OSPE are substantially lesser (1/12) than the number of 

encoded tokens in BPE. This is because BPE uses bytes as the 

basic subword units while OSPE considers orthographic 

syllables as the basic subword unit. It would be important to 

note that an orthographic syllable as defined in this work is 

several bytes long. Certain orthographic syllables can be as 

large as 8 bytes. When used on large datasets, this would lead 

to significant compute savings. OSPE based models will also 

require shorter training time than other byte-level encoding 

techniques as OSPE based models do not have to learn the 

nature of the script, as the tokens are already semantically 

correct. 

 

VIII. CONCLUSIONS AND FUTURE WORK 

In this paper, we propose a new technique for the encoding of 

Indic languages. We suggest the use of orthographic syllables, 

a variable length, linguistically motivated, approximate 

syllable, as a basic subword unit. We also propose the use of 

compression through a variant of BPE. OSPE performs much 

better for OOV words. The benefits span across different 

models and languages. This leads us to explore the use of 

OSPE across languages. It also leads us to look into designing 

a unified encoder for different Indic languages in the future. 

IX. LIMITATIONS 

Currently, OSPE requires that for the Indo-Aryan and the 

Indo-Dravidian languages character classes be separately 

defined. This is because the Unicode blocks for the two 

language families have different Unicode ranges for the 

different character types – vowels, consonants and diacritics. 

These hyperparameters will have to be taken into 

consideration while using the encoder.  

This study does not perform extensive large-scale 

experimentation due to compute and budget limitations. The 

technique can be further improved and tested on a more 

comprehensive set of Indic Languages to cement its efficacy 

further. This study also does not consider the effect of training 

corpus size on the model performance. 
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