

979-8-3503-0965-2/23/$31.00 ©2023 IEEE

Orthographic Syllable Pair Encoding for Language

modelling tasks in Indic Languages
Manodnya K H

Department of Computer Science and Engieering

PES University

Bangalore, India

manodynak@gmail.com

Animesh Giri

Department of Computer Science and Engieering

PES University

Bangalore, India

animeshgiri@pes.edu

Abstract— The use of subword units for language modelling

tasks is widespread. But, Indic languages have a complex

compound script (abugida script), which renders UTF-8-based

subword units inefficient. We explore the use of orthographic

syllables as the basic sub-word unit for Indic languages to be

used for language modelling tasks. We propose Orthographic

Syllable Pair Encoding (OSPE) to encode text data for use in

Large Language Models. The intuition behind this is to use the

natural subword unit in Indic scripts, the Orthographic

Syllable, as the basic subword unit for the model instead of UTF-

8 characters, which do not quite match the phonemic shapes of

Indic languages, leading to the generation of semantically

incorrect characters. We compare OSPE to other subword-

based encoding techniques, and we find that models trained with

data encoded with OSPE outperform the other subword models

on language modelling tasks. For example OSPE showed a 30%

improvement in compression ratio over BPE.

Keywords—Tokenization, Indic Languages, Language

modelling, Large Language Models

I. INTRODUCTION

Indic languages, belonging to the Indo-Aryan and
Dravidian language families, are linguistically and culturally
diverse, with a rich history. These languages are primarily
written using abugida scripts, where characters represent
consonant-vowel sequences, forming syllables [1].

Traditional methods for encoding and tokenization of
Indic language text, such as Unicode characters or Byte Pair
Encoding (BPE) [2], face certain challenges. BPE, a
commonly used text compression algorithm, operates on bytes
or characters, which are not ideal for capturing the linguistic
units of Indic languages. Given the nature of abugida scripts,
where characters represent syllables, it becomes necessary to
consider orthographic syllables as subword units for efficient
encoding and tokenization [3].

To address these challenges, Orthographic Syllable Pair
Encoding (OSPE) offers a tailored solution for Indic
languages by incorporating the concept of orthographic
syllables. In OSPE, the text is first segmented into a sequence
of orthographic syllables, representing meaningful linguistic
units. This process, known as orthographic syllabification,
ensures accurate tokenization of Indic language text.

Orthographic syllabification in OSPE is achieved by
utilizing the Unicode character boundaries of different
character classes in Indic scripts. For example, in the
Dravidian language Kannada, specific Unicode ranges are
assigned for vowels, consonants, and other character classes.
Following the rules for syllabifying Indic scripts, as defined
by Ishida and Richard [4], the text can be effectively split into
orthographic syllables.

To tackle the challenges of encoding and compressing
Indic language text, OSPE extends the BPE algorithm. While
BPE replaces frequently occurring pairs of bytes with a single,
unused byte, OSPE merges orthographic syllables and
sequences of frequently occurring orthographic syllables. By
representing words as sequences of orthographic syllables and
iteratively merging the most frequent pairs and n-grams,
OSPE achieves efficient compression while preserving the
linguistic integrity of the text.

One crucial advantage of OSPE over BPE is that OSPE
ensures the resulting symbols are interpretable as valid
characters in Indic scripts. In contrast, certain n-grams in BPE
may no longer be interpretable as valid character sequences in

Indic languages. For example, the character "ಾ " in Kannada,

although a valid UTF-8 character, is not considered a
standalone linguistic unit but rather an orthographic syllable.

By addressing the specific requirements of Indic
languages and abugida scripts, OSPE offers an effective
solution for tokenization and compression. The combination
of orthographic syllabification and merging of orthographic
syllables enables the encoding of text in a way that captures
the linguistic structure and statistical properties of Indic
languages. This research paper explores the application of
OSPE and its benefits in the context of Indic languages,
contributing to the advancement of text encoding techniques
for these culturally significant languages.

II. RELATED WORKS

The topic of variable length encoding is pivotal in the field
of Natural Language Processing (NLP), and various
techniques have been explored to accurately represent
sequences of symbols, each with unique strengths and
limitations. One of the most simplistic yet efficient methods is
one-hot encoding [5] [6], assigning a unique binary vector to
each symbol in the vocabulary, an approach that excels in
memory usage but may fall short in computational efficiency.

A more sophisticated approach is hashing [7], where each
symbol is assigned a unique hash value, permitting indexing
into a fixed-size vector. While this approach offers
computational efficiency with a single hash operation per
symbol, it may induce a higher memory footprint when the
vector size surpasses the vocabulary size. Positional encoding
[8], another variant, encodes the position of each symbol in
the sequence, a vital requirement in tasks such as machine
translation that heavily depend on word order.

More complex techniques include Byte Pair Encoding
(BPE) [2], SentencePiece [9], and WordPiece [10], which
have been designed to address specific challenges in NLP.
BPE is a fusion of one-hot encoding and hashing, where

symbols are divided into byte pairs and encoded using a hash
function. The hash values resulting from this process are then
used to index into a fixed-size vector, striking a balance
between computational efficiency and memory usage.

The SentencePiece and WordPiece techniques segment
text into subwords or "sentence pieces", offering a different
perspective on text representation. SentencePiece stems from
the notion that words may not be the optimal unit for NLP
tasks, while WordPiece, developed specifically for large
language models (LLMs), hypothesizes that words often
consist of multiple subwords represented using a fixed-size
vector. Both techniques have shown promising results in tasks
such as machine translation and language modeling.

The research by Kunchukuttan and Bhattacharyya, 2016
[11] and its subsequent iterations make significant strides in
this field, proposing orthographic syllables as the primary
subword unit for language modeling tasks. Despite the initial
approach exhibiting significant improvement over other
subword units, it struggled with scripts from the Indo-
Dravidian language families, as it didn't account for the two
extra vowels found in Dravidian languages: ē and ō.

Kunchukuttan et al., 2017 [12] proposed a method for
improving machine translation (MT) performance by utilizing
language relatedness. The authors argue that languages that
are related to each other are more likely to share similar
linguistic features, which can be exploited by MT systems to
improve the accuracy of translations. The paper presents a
case study on the use of language relatedness for MT on
languages of the Indian subcontinent. The authors evaluated
their method on a dataset of parallel corpora for Hindi-
English, Bengali-English, and Marathi-English. They found
that their method was able to improve the accuracy of MT for
all three language pairs.

Furthering their research, Kunchukuttan et al., 2018 [13]
introduced the Brahmi-Net system, a neural network-based
transliteration and script conversion system for languages of
the Indian subcontinent. Trained on a large parallel text
corpus, this model learns phonetic and orthographic
similarities between languages, thus enabling accurate
transliteration and script conversion. The model's proficiency
spans a wide variety of languages, including Hindi, Bengali,
Marathi, Tamil, Telugu, Malayalam, and Sanskrit, and it
performs excellently in script conversions between scripts
such as Devanagari, Bengali, Gurmukhi, Tamil, Telugu,
Malayalam, and Kannada. Performance evaluations on
various datasets confirm its superiority over other state-of-the-
art transliteration and script conversion systems, with
commendable generalization abilities for unseen languages.

III. ORTHOGRAPHIC SYLLABLES IN INDIC LANGUAGES

Indic scripts are written using a C+V (consonant + vowel)
format, which serves as the fundamental principle of these
scripts [14][15]. In addition to vowels and consonants, Indic
scripts also include vowel modifiers and consonant modifiers.
This combination of elements allows for the formation of
syllables within the script.

By default, the "a" sound follows all consonants in Indic
scripts, but other sounds can be designated using vowel
modifiers. Vowel modifiers allow for the representation of
different vowel sounds following a consonant. The "a"
modifier can be suppressed by using an explicit halanta
character placed at the end of the consonant.

Consonant sounds can be combined or modified using one
or more consonant modifiers. These modifiers alter the
pronunciation or form of the consonant. The valid
orthographic syllables in Indic scripts include various
combinations of characters:

• A vowel: Represents a standalone vowel sound.

• A consonant: Represents a consonant sound
followed by the default "a" vowel sound.

• A consonant + a vowel modifier: Represents a
consonant sound followed by a specific vowel
sound indicated by the modifier.

• A consonant + one or more consonant modifiers:
Represents a consonant sound modified by one or
more consonant modifiers.

• A consonant + a vowel modifier + a consonant
modifier: Represents a consonant sound
modified by both a vowel modifier and a
consonant modifier.

• A consonant + a halanta character: Represents a
consonant sound without the default "a" vowel
sound.

It is important to note that certain combinations are
considered invalid orthographic syllables:

• A vowel modifier on its own: Does not form a
complete syllable.

• A consonant modifier on its own: Does not form
a complete syllable.

Table 1 shows the list of vowels and vowel modifiers for
the Kannada language. Table 2 has examples of valid and
invalid orthographic syllables in the Kannada language. Table
3 shows the tokenization of a word as a sequence of
orthographic syllables compared to other methods.

TABLE I. VOWELS AND VOWEL MODIFIERS FOR KANNADA

Le

tte

r

Diac

ritic

ISO no

tation
Letter

Diacr

itic

ISO n

otatio

n

ಅ none a ಆ ಾ Ā

ಇ ಾ i ಈ ಾ Ī

ಉ ಾ u ಊ ಾ Ū

ಋ ಾ r̥

ೠ (o

bsolet

e)

ಾ r̥̥̄

ಎ ಾ e ಏ ಾ Ē

ಐ ಾ ai

ಒ ಾ o ಓ ಾ Ō

https://en.wikipedia.org/wiki/ISO_15919
https://en.wikipedia.org/wiki/ISO_15919

ಔ ಾ au

TABLE II. EXAMPLES OF VALID AND INVALID ORTHOGRAPHIC

SYLLABLES IN KANNADA

Valid Orthographic
Syllables

Invalid Orthographic
syllables

ಕ (Kaa) – Consonant +
vowel modifier

ಾ (the aa diacritic) -A
vowel modifier on it’s own

ಕ (ka) – Consonant only All consonant modifiers on
their own

ಕೃ (kru) – Consonant +
consonant modifier

ಕ ಾ (kka) – Consonant +
vowel modifier +
consonant modifier

ಆ (aa) – Vowel only

TABLE III. SAMPLE TOKENIZATION FOR A KANNADA WORD

Unit Tokens Transliteration

Word ಅರಮನೆಯಲ್ಲ ಿ Aramaneyalli

Orthographic
syllable

ಅ ರ ಮ ನೆ
ಯ ಲ್ಲ ಿ

A ra ma ne ya lli

Byte ಅ ರ ಮ ನ
ಾ ಯ ಲ್ ಲ್ಿ
ಾ

A ra ma n e ya l ll i

Aramane-Palace, alli-in there

Aramaneyalli – In the palace

IV. ORTHOGRAPHIC SYLLABLE PAIR ENCODING

OSPE comprises two phases, orthographic syllabification
and merging of frequently occurring pairs. We modify and use
the BPE algorithm proposes by Gage et al. [16] for encoding.
BPE is a very uncomplicated method of data compression in
which the most common pair of bytes in a sequence are
incrementally replaced with a single, unused byte.. But,
instead of merging bytes) or characters and character
sequences, we merge orthographic syllables and sequences of
frequently occurring Orthographic Syllables

A. Orthographic Syllabification

Orthographic syllabification refers to the process of
splitting the text into a sequence of orthographic syllables. It
is used here to tokenize text into a sequence of orthographic
syllables.

We perform orthographic syllabification using the
Unicode character boundaries of the different character

classes. For example, for the Kannada language, the characters
lying between 0C81 and 0C94 would be vowels, the
characters between 0C95 and 0CB9 would be consonants, and
so on. This method of tokenization works as the different
character sets for Indic languages are in continuous range in
the allocated blocks.

We initialize the current orthographic syllable and then
iterate through the text. The following rules are used to
generate the orthographic syllables:

If the character is a vowel, append to the current syllable,
add the syllable to the vocabulary and reinitialize the current
syllable.

If the character is a consonant, append to the current
syllable and continue.

If the character is a halanta character, append to the current
syllable and continue.

If the character is a vowel diacritic, append to the current
syllable, add the syllable to the vocabulary and reinitialize the
current syllable.

If the character is a number or any other special character,
add the syllable to the vocabulary and reinitialize the current
syllable.

Algorithm 1 is used for orthographic syllabification.

Algorithm 1: Orthographic syllabification

 function get_syllables(text):

 # initializing the list of syllables

 # and the current orthographic syllable

 syllableList = []

 os = ""

 for character in text:

 if characterIsVowel:

 os = os+character

 syllableList.append(os)

 os = ""

 else if characterIsConsonant:

 os = os + character;

 characterNext = the next character in text

 if characterNextIsNotHalanta and

characterNextIsNotDiacratic:

 os = os + character

 os = ""

 syllableList.append(os)

 if characterNextIsHalanta or characterNextIsDiacratic:

 os = os + character

 syllableList.append(os)

 os = ""

 return syllableList

B. Merging Orthographic Syllables

We initialize the symbol vocabulary with the vocabulary
of orthographic syllables and represent each word as a
sequence of orthographic syllables. We also include a special
end-of-word symbol to restore the original tokenization. The
orthographic syllable pairs are then iteratively counted, and
the most frequently occurring symbol pairs are merged. Such
a merged pair is now replaced with a new symbol which is an
orthographic syllable n-gram. We subsequently merge the
most frequently occurring n-grams into a single symbol. The
sum of the initial vocabulary size and the number of merge
operations gives the size of the final vocabulary. The pairs that
cross word boundaries are not considered for efficiency. The
algorithm can be applied to the dictionary or the list of tokens
extracted from a text, with each orthographic syllable being
given a weight proportional to its frequency.

Algorithm 2 is used for merging of orthographic syllable
pairs.

Algorithm 1: Merging Orthographic Syllable

Pairs

function getPairs(syllables)

 if syllable in self.cache:

 return self.cache[syllable]

 word = tuple(syllable)

 pairs = getPairs(word)

 if not pairs:

 return syllable

 while True:

 bigram = min(pairs, key = lambda pair:

ospe_ranks.get(pair, float('inf')))

 if bigram not in ospe_ranks:

 break

 first, second = bigram

 new_word = []

 i = 0

 while i < len(word):

 try:

 j = word.index(first, i)

 new_word.extend(word[i:j])

 i = j

 except:

 new_word.extend(word[i:])

 break

 if word[i] == first and i < len(word)-1 and word[i+1] ==

second:

 new_word.append(first+second)

 i += 2

 else:

 new_word.append(word[i])

 i += 1

 new_word = tuple(new_word)

 word = new_word

 if len(word) == 1:

 break

 else:

 pairs = get_pairs(word)

word = ' '.join(word)

self.cache[syllable] = word

return word

__

The main difference between OSPE and other variable
length encoding techniques based on Huffman encoding
algorithms [17] is that our networks can still interpret these
word sequences as subword units. This means they can
produce new words based on these units, even if they aren't
seen during training. OSPE also significantly differs from
BPE because we use orthographic syllables as our subword
unit instead of UTF-8 characters. Each of our symbols would
be interpretable as a valid character in an Indic script, unlike
in BPE, where certain n-grams would no longer be
interpretable as a valid character sequence in an Indic

language. For example the character “ಾ ”, which although a

valid UTF-8 character is not a valid independent linguistic
unit. The figure shows an example of the encoding technique
with the merge operation. This is applicable to open networks
with fixed symbol vocabularies.

For the following sentence, figure 2. shows the merge
operations performed by OSPE.

“ಸೀತೆಯ ಗಂಡ ರ ಮ. ರ ಮನೆ ಂದಿಗೆ ಸೀತೆ ಕ ಡಿಗೆ ಹೆ ೀದಳು.
ಅವಳ ೆಂದಿಗೆ ಅವಳು ಒಂದೆೀ ಸೀರೆ ಒಯದಳು.”

(Seeteya ganda Raama. Raamanondige seete kaadige
hodalu. Avalondige avalu onde seere oydalu)

(Raama is Seete’s husband. Seete went to the forest with
Raama. She carried one saree with her)

Figure 1: The OSPE merge operations

V. MODEL TRAINING AND EVALUATION SET UP

A. Evaluation set up

We evaluate OSPE against BPE. We train GPT-2 (117M) on

the CC-100 corpus [18] in the Kannada language for a 70000

steps. The encoder released as a part of the open-sourced GPT-

2 release was used for BPE. The encoder, defined in section 2

above, was used for OSPE.

The hyperparameters and optimizers were adapted from [19].

The Adam optimizer is used for gradient optimization. A

tensor rematerialization framework is used for graph

optimization [20].

B. Evaluation parameters

The encoding technique is evaluated based on its efficiency

and robustness. We use the BLEU benchmark [21] to evaluate

the trained model.

We compare the compression ratio of OSPE with BPE,

orthographic syllable encoding, and sentence piece encoding.

The compression ratio is calculated using equation 1.

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜

=
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑡𝑒𝑥𝑡 𝑓𝑖𝑙𝑒

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑛𝑐𝑜𝑑𝑒𝑑 𝑓𝑖𝑙𝑒

Equation 1: Evaluation of compression ratio

We propose using a new benchmark, the Efficiency Score to

evaluate the efficiency of the encoding technique. The

Efficiency Scale can be defined as the percentage of valid

tokens generated by the large language model. The higher the

Efficiency Scale score, the better is the model. Equation 2 is

used to measure the efficiency score. The efficiency score is a

measure to verify the semantic correctness of the generated

text.

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑆𝑐𝑜𝑟𝑒
= 100

−
𝑛𝑜. 𝑜𝑓 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 𝑇𝑜𝑘𝑒𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑡𝑜𝑘𝑒𝑛𝑠
∗ 100

Equation 2: Evaluation of Efficiency Score

VI. RESULTS

A. Compression ratio

Table 4 shows the compression ratios for BPE and OSPE.

TABLE IV. COMPARISON OF THE COMPRESSION RATIOS OF BPE AND

OSPE

BPE OSPE

2.58 3.33

It was observed that OSPE outperformed BPE with respect to

the compression ratio. OSPE returned an average compression

ratio of 3.33 which is 29.4% higher than that of BPE. This also

led to significant reduction in the compute requirements which

will be discussed in the next section

B. Compute requirements

Based on our experiments, we observe that the memory

requirements of OSPE are an average of 8% lesser than that

of BPE in the encoding phase and 10% lesser in the training

phase when compared to BPE. However, large scale studies

on the compute requirements have not been performed.

C. Efficiency score

The efficiency score as proposed in 3.2 is calculated for the

model. A few efficiency scores are given in table 3 for 3

different prompts.

TABLE V. COMPARISON OF THE COMPRESSION RATIOS OF BPE AND

OSPE

Run BPE OSPE

Prompt 1 82.05 97.06

Prompt 2 69.29 84.3

Prompt 3 76.45 90.4

It can be observed that for the same training time and model

prompts, OSPE generates a much lower percentage of invalid

tokens than BPE.

D. Token Count

For the CC-100 dataset, the number of tokens generated by

OSPE and BPE were counted. Table 6, shows the token count

for OSPE and BPE.

TABLE VI. TOKEN COUNT OF OSPE AND BPE

BPE OSPE

2757432944 211191977

It can be observed that OSPE returns approximately 1/12th of

the tokens returned by BPE.

VII. DISCUSSION

OSPE performs much better than other subword-based

encoding techniques as it functions on the level of

orthographic syllables which are a natural linguistic unit for

Indic languages. OOV words can be handled better in OSPE

than in word-level, and morpheme-level encoding techniques,

as the tokenization happens at the sub-word level. OSPE

considers the nature of the Indic scripts during the encoding

phase, leading to more accurate tokens being generated, unlike

other tokenization techniques, which consider UTF-8

characters as the basic subword units. This leads to lesser

incorrect tokens being generated as the smallest token that can

be generated by a model trained on data encoded with OSPE

is an orthographic syllable which is still a discrete

semantically correct unit of the language.

We also observed that OSPE outperforms BPE, on several

counts like the compression ratio, compute costs, efficiency

score and the BLEU scores. We could attribute the higher

compression to the fact that the number of encoded tokens in

OSPE are substantially lesser (1/12) than the number of

encoded tokens in BPE. This is because BPE uses bytes as the

basic subword units while OSPE considers orthographic

syllables as the basic subword unit. It would be important to

note that an orthographic syllable as defined in this work is

several bytes long. Certain orthographic syllables can be as

large as 8 bytes. When used on large datasets, this would lead

to significant compute savings. OSPE based models will also

require shorter training time than other byte-level encoding

techniques as OSPE based models do not have to learn the

nature of the script, as the tokens are already semantically

correct.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a new technique for the encoding of

Indic languages. We suggest the use of orthographic syllables,

a variable length, linguistically motivated, approximate

syllable, as a basic subword unit. We also propose the use of

compression through a variant of BPE. OSPE performs much

better for OOV words. The benefits span across different

models and languages. This leads us to explore the use of

OSPE across languages. It also leads us to look into designing

a unified encoder for different Indic languages in the future.

IX. LIMITATIONS

Currently, OSPE requires that for the Indo-Aryan and the

Indo-Dravidian languages character classes be separately

defined. This is because the Unicode blocks for the two

language families have different Unicode ranges for the

different character types – vowels, consonants and diacritics.

These hyperparameters will have to be taken into

consideration while using the encoder.

This study does not perform extensive large-scale

experimentation due to compute and budget limitations. The

technique can be further improved and tested on a more

comprehensive set of Indic Languages to cement its efficacy

further. This study also does not consider the effect of training

corpus size on the model performance.

REFERENCES

[1] Salomon, R.G., 2000. Typological observations on the Indic script
group and its relationship to other alphasyllabaries.

[2] Sennrich, R., Haddow, B. and Birch, A., 2015. Neural machine
translation of rare words with subword units. arXiv preprint
arXiv:1508.07909.

[3] Maskey, U., Bhatta, M., Bhatt, S., Dhungel, S. and Bal, B.K., 2022,
June. Nepali encoder transformers: An analysis of auto encoding
transformer language models for nepali text classification.
In Proceedings of the 1st Annual Meeting of the ELRA/ISCA Special
Interest Group on Under-Resourced Languages (pp. 106-111).

[4] Ishida, R., 2002, September. An introduction to Indic scripts.
In Proceedings of the 22nd Int. Unicode Conference (Vol. 8).

[5] A Statistical Approach to Text Analysis" by Christopher Manning and
Hinrich Schütze

[6] "Feature Engineering for Natural Language Processing" by Jason
Brownlee

[7] Joachims, T., Freitag, D., & Graninger, D. (2002). A fast and effective
hashing method for natural language processing. Machine Learning,
47(1), 133-169.

[8] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., ... & Kaiser, L. (2017). Attention is all you need. Advances in
Neural Information Processing Systems, 30, 5865-5877.

[9] Kudo, T., & Richardson, J. (2018). SentencePiece: A simple and
efficient way to represent text. arXiv preprint arXiv:1808.04586.

[10] Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey,
W., ... & Dean, J. (2016). Google's neural machine translation
system: Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144.

[11] Kunchukuttan, A., & Bhattacharyya, P. (2016). Orthographic syllable
as basic unit for SMT between related languages. arXiv preprint
arXiv:1610.00634.

[12] Kunchukuttan, A., & Bhattacharyya, P. (2017). Utilizing language
relatedness to improve machine translation: A case study on languages
of the Indian subcontinent. In Proceedings of the International Joint
Conference on Advances in Natural Language Processing (IJCNLP)
(pp. 1007-1016). Association for Computational Linguistics.
https://www.aclweb.org/anthology/I17-1007

[13] Kunchukuttan, A., Khapra, M., Singh, G., & Bhattacharyya, P. (2018).
Leveraging orthographic similarity for multilingual neural
transliteration. Transactions of the Association for Computational
Linguistics, 6, 42

[14] Richard Sproat. 2003. A formal computational analysis of Indic scripts.
In International symposium on indic scripts: past and future, Tokyo.

[15] Anil Kumar Singh. 2006. A computational phonetic model for Indian
language scripts. In Constraints on Spelling Changes: Fifth
International Workshop on Writing Systems.

[16] Philip Gage. 1994. A New Algorithm for Data Compression. C Users
J., 12(2):23–38, February

[17] Chitnis, R., & DeNero, J. (2015, September). Variable-length word
encodings for neural translation models. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing
(pp. 2088-2093). Lisbon, Portugal: Association for Computational
Linguistics.

[18] Conneau, A., Hu, Z., Radford, A., & Narasimhan, K. (2020).
Unsupervised machine translation with cross-lingual masked language
modeling. arXiv preprint arXiv:2001.08237.

[19] Manodnya, K.H., & Giri, A. (2022, October). GPT-K: A GPT-based
model for generation of text in Kannada. In 2022 IEEE 4th
International Conference on Cybernetics, Cognition and Machine
Learning Applications (ICCCMLA) (pp. 534-539). IEEE.

[20] Kumar R, Purohit M, Svitkina Z, Vee E, Wang J. Efficient
rematerialization for deep networks. Advances in Neural Information
Processing Systems. 2019;32.

[21] Papineni, K., Roukos, S., Ward, T. and Zhu, W.J., 2002, July. Bleu: a
method for automatic evaluation of machine translation.
In Proceedings of the 40th annual meeting of the Association for
Computational Linguistics (pp. 311-318).

	I. Introduction
	II. Related Works
	III. Orthographic Syllables In Indic Languages
	IV. Orthographic Syllable Pair Encoding
	A. Orthographic Syllabification
	B. Merging Orthographic Syllables

	V. Model Training And Evaluation Set Up
	A. Evaluation set up
	B. Evaluation parameters

	VI. Results
	A. Compression ratio
	B. Compute requirements
	C. Efficiency score
	D. Token Count

	VII. Discussion
	VIII. Conclusions And Future Work
	IX. Limitations
	References

