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Abstract

Despite the significant advancements of decoder-style dense large language mod-
els (LLMs), e.g., LLaMA and ChatGPT, there remains limited exploration of
sparse language models. Sparsely activated models, decoupling model size from
computation costs, provide a practicable way to extrapolate the scaling law and
attract increasing attention. Although sparse models are more efficient and flexible
in terms of quality and computation cost, they still suffer from data-hungry and
instability problems to training from scratch in a large-scale setting. Motivated
by these limits, we investigate building a sparsely activated Mixture-of-Experts
(MoE) model from existing decoder-style large language models. Specifically,
based on the most well-known open-source LLaMA-2, we obtain an MoE model
by: (1) Expert Construction, which partitions the parameters of original Feed-
Forward Networks (FFNs) in the LLaMA models into multiple functional modules
as experts; and (2) Continual pre-training, which further trains the transformed
MoE model and additional gate networks for expert routing. After these stages,
the model could maintain its language abilities and routes the input tokens to
specific experts. Meanwhile, only part of the total parameters are activated. In
this report, we present the LLaMA-MoE-v1 series, converting a LLaMA-2-7B
model into MoE models and training them continually. In particular, we intro-
duce two different sizes of MoE models that activate 3.0B and 3.5B parameters,
respectively. Empirically, by training 200B tokens, LLaMA-MoE-v1-3.5B models
significantly outperform dense models that contain similar activation parameters,
while LLaMA-MoE-v1-3.0B performs comparably with them. LLaMA-MoE-v1
series also provide a feasible framework to train MoE models from the existing
LLMs in a more cost-effective approach. It is worth noting that our framework can
be easily applied to more decoder-style LLMs. The source code and models can be
obtained at https://github.com/pjlab-sys4nlp/llama-moe.

1 Introduction

Large-scale training has been an effective and promising way towards flexible and powerful neural
language models. Recently, large language models, such as ChatGPT (ChatGPT, 2023), LLaMA
(Touvron et al., 2023a), InternLM (Team, 2023), have presented remarkable understanding and
reasoning capability on a wide range of domains and tasks. In deep learning, the amplification of
scale serves as a pivotal catalyst for augmenting performance efficacy. Extrapolating this trend reveals
that immense model size may be unsustainable due to the computational costs. Inspired by this limit,
we investigate scaling model size in activation parameters fixed regimes. In other words, we focus on
sparsely activated models that decouple model size from computation costs. However, the cost of
training a giant sparse model can still not be ignored.
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In this work, we investigate building sparse mixture-of-experts (MoE) models from existing LLMs,
especially recent decoder-style models. In particular, based on LLaMA, we transform the Feed-
Forward Networks (FFNs) in the transformer decoder blocks into experts, and then continue training
the converted LLaMA-MoE-v1 models. Different from previous works converting FFNs to experts
(Zuo et al., 2022; Zhang et al., 2021; Komatsuzaki et al., 2022) or training MoE models from scratch
(Lepikhin et al., 2020; Fedus et al., 2022; Zoph et al., 2022), LLaMA-MoE-v1 series primarily exhibit
three characteristics: (1) Obtaining MoE from a dense model can alleviate the instability issues
during training from scratch and significantly reduce the overall budget. (2) Instead of studying
expert construction for ReLU-based FFN in BERT (Devlin et al., 2018) or T5 (Raffel et al., 2020),
we comprehensively explore the properties of SwiGLU-based FFN widely adopted in recently
decoder-style LLaMA models. To this end, we experiment extensive partitioning methods for the
SwiGLU-based FFN. (3) Previous methods commonly adopted every-two or last-two MoE layer
placement methods for training stability. Specifically, every-two refers to replacing the even layer’s
FFN with MoE, and last-two indicates placing MoE at the last two even layers. In this work, we are
dedicated to building a full MoE model, where each layer contains an MoE block.

To build strong LLaMA-MoE-v1 models, we identify two important challenges. First, how to
effectively construct experts from the FFNs in the existing LLMs. The existing method (Zhang
et al., 2021) explored random splitting, parameter clustering, and building co-activation graphs
for expert construction upon T5 models. There are also methods (Zuo et al., 2022) designing an
importance-based method to adapt FFNs into experts based on BERT models. More intuitively,
Komatsuzaki et al. (2022) directly copy the FFNs to form experts. However, there is no previous
work exploring it for decoder-style models. Second, overcoming the performance decrease entailed
by changing the network structure from dense to sparse remains challenging. Due to the reduction in
the amount of activated parameters and the newly introduced gate network for expert routing, we
observe a significant performance drop between the LLaMA-MoE-v1 models and the original dense
LLaMA models. Considering the substantial training cost, it is important to improve the MoE model
performance with acceptable computation expense.

To solve the above issues, we comprehensively explore different methods for expert construction and
propose a simple random division strategy, which splits the parameters of FFNs into non-overlapping
experts. However, a rescale operation is a crucial component for model convergence under limited
training budgets. Specifically, considering activating k experts among a total of N experts, the
intermediate layer dropout ratio is (N − k)/N , and we subsequently scale the output of expert by
a factor of N/k. Despite its simplicity, the random split with rescale output can surpass all other
complex construction methods. Furthermore, we continue training the transformed MoE models
and an additional gate network with a domain weight proportion corresponding to the activated
parameters. In this way, the LLaMA-MoE-v1 can quickly converge to a decent level. In this paper,
we continue training each LLaMA-MoE-v1 model with 200B tokens. In the future, we will train
more tokens and further improve the model performance.

In summary, our contributions are as follows:

• We propose LLaMA-MoE-v1, a framework to develop mixture-of-experts from existing
decoder-style LLM, which has never been explored before. Specifically, based on the
LLaMA model, we build a full MoE model, where all layers are sparse.

• To effectively construct experts, we thoroughly explore various parameter partition methods,
including parameter-share and parameter non-share expert construction. We also note that a
parameter rescale operation is crucial for effective expert output.

• Our extensive experiments on a variety of tasks validate the effectiveness of our proposed
LLaMA-MoE-v1. Specifically, LLaMA-MoE-v1-3.5B models significantly outperform
other popular LLMs at similar activation parameters, including OpenLLaMA (Geng and
Liu, 2023), Sheared LLaMA (Xia et al., 2023), and Pythia (Biderman et al., 2023). It should
be noted that our LLaMA-MoE-v1 is highly generalizable and can be extended to a larger
size in future work.

2 Related Work

Mixture-of-Experts (MoE). Traditionally, dense models feed all parameters to each input token. In
this way, the growing model capacity brings increased computational cost. To alleviate this issue,
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sparse models attempt to activate a subset of parameters for each input and these activated parameters
are referred as experts.

In Shazeer et al. (2017), MoE was first proven effective in modern deep learning. This work added
an MoE layer which was stacked between LSTM, resulting in state-of-the-art results in language
modeling and machine translation benchmarks. Subsequently, the MoE layer is introduced to the
transformer architecture as a substitute for the FFN layers. Gshard (Lepikhin et al., 2020) applied
the MoE to the Transformer and significantly improved machine translation across 100 languages.
Switch Transformers (Fedus et al., 2022) further scales the language model’s size to the trillion-level
parameter with a simple and effective MoE layer design. Naively trained MoE models is prone to
load imbalance, e.g., only a few experts are frequently used while the others are scarcely activated.
For optimizing the training, BASE layer (Lewis et al., 2021), HASH layer (Roller et al., 2021), and
Expert Choice (Zhou et al., 2022) study how to build MoE models to fully utilize the model capacity.
Recently, for model architecture, Xue et al. (2023) explore training a decoder-only MoE with a
modified UL2 training objective. Mixtral is another decoder-style MoE model that selects two out of
eight experts with token-choice routing (AI, 2023b).

Expert Construction. There are two lines of works constructing MoE from dense checkpoints.
The first category splits the parameters of the FFNs and ensures that the total model parameters
remain unchanged. MoEBERT (Zuo et al., 2022) propose an importance-based method to adapt
the FFNs into experts. Considering that some neurons in the FFNs contribute more to the model
performance, they share the most important neurons (i.e., the ones with the highest scores) among
the experts, and the other neurons are distributed evenly. MoEfication (Zhang et al., 2021) study the
activation patterns of FFNs in Transformer models and find a sparse activation phenomenon. Then,
they discover the functional partitions (experts) in FFNs and build routers for selecting experts. It is
worth noting that they only focus on the ReLU-based FFNs in T5 (Raffel et al., 2020) and BERT
(Devlin et al., 2018). There is another type of work that expands the total model parameters while
keeping the activation parameters as the original dense models. Sparse upcycling (Komatsuzaki et al.,
2022) explore upgrading an existing dense model into a larger, sparsely activated MoE. In particular,
the experts in the new MoE layer are identical copies of the original MLP layer that is replaced. In
this paper, our work follows the first research line and decomposes the original FFNs into multiple
small experts. Different from MoEBERT and MoEfication, our work focuses on a SwiGLU-based
decoder-style models and continues training the MoE models.

3 Preliminary

A standard Mixture of Experts (MoE) layer comprises N expert networks {E1, E2, . . . , EN} and
a gating network G which activates the top-k experts and distributes input tokens to corresponding
experts. In general, the number of selected experts k is fixed and much smaller than the total number
of experts N , which presents the sparsely activated fashion of MoE models. Formally, given an input
embedding x, Ei(x) denotes the output of the i-th expert network, the MoE layer’s output is the sum
of outputs from k selected experts:

y =

k∑
i=1

G(x)i · Ei(x), (1)

where the top-k indices are determined by G(x), indicating which experts accept the input x.
Following Shazeer et al. (2017), we implement a token-level noisy top-k gating with load balancing
in LLaMA-MoE-v1.

4 Methodology

As illustrated in Figure 1, we construct LLaMA-MoE-v1 from LLaMA-2-7B by first partitioning
FFNs into multiple experts and each token is routed to top-k experts. Continual pre-training is
subsequently applied to recover the MoE model’s language ability. In the following sections, we
first introduce the expert construction method from the original dense model, then present the data
sampling and processing strategies in continual pre-training.
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Figure 1: (a) Based on LLaMA models, we construct LLaMA-MoE-v1. All parameters except the
FFNs are retained from the original models. Meanwhile, the FFNs are transformed into MoE experts.
For simplicity, we only demonstrate one decoder layer in LLaMA and LLaMA-MoE-v1 models. (b)
The original FFNs in the LLaMA are split into different experts as described in Section 4.1. (c) In
LLaMA-MoE-v1, the hidden states are processed by chosen experts instead of the whole experts.

4.1 Expert Construction

In this section, we describe the construction of each expert network in the LLaMA-MoE-v1. We
start with the feed-forward network in LLaMA which uses SwiGLU (Shazeer, 2020) as the activation
function. Each FFN layer in LLaMA consists of three parts: an up projection weight Wup ∈ Rd×dh ,
a gate projection weight Wgate ∈ Rd×dh and a down projection weight Wdown ∈ Rdh×d. Given an
input x ∈ Rd, the output y ∈ Rd of the FFN is:

y = hWdown, h = xWup ⊙ Swish(xWgate). (2)

In LLaMA-MoE-v1, each expert network is implemented as a feed-forward layer.

Specifically, given the expert size m and the selection indices set Sj , the weights of the j-th expert
network Ej is formulated as:

W (j)
up = Wup:,Sj

∈ Rd×m, W
(j)
gate = Wgate:,Sj

∈ Rd×m, W
(j)
down = WdownSj ,: ∈ Rm×d, (3)

where the selection indices set Sj is:

Sj = {ij1 , ij2 , . . . , ijm | 1 ≤ ij1 ̸= ij2 ̸= · · · ̸= ijm ≤ dh} . (4)

Given an input x ∈ Rd, the output Ej(x) ∈ Rd of the j-th expert network Ej is:

Ej(x) = hjW
(j)
down, hj = xW (j)

up ⊙ Swish(xW
(j)
gate). (5)

Based on whether the intermediate neurons within the FFN are shared among different experts, we
implement two groups of construction methods: Neuron-Independent and Neuron-Sharing.

Neuron-Independent. We formulate expert construction as a task of partitioning into equal-sized
sets. Given a universal set U containing indices of all intermediate neurons {1, 2, . . . , dh}, we
uniformly split U into n equal-sized indices set S1, S2, . . . , Sn and construct experts with size
m = dh

n according to Equation 3, where we have:
n⋃

i=1

Si = U and
n⋂

i=1

Si = ∅. (6)

Specifically, we describe two kinds of partition methods:
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Model #Activated Experts #Total Experts #Activated Params

OPT-2.7B - - 2.7B
Pythia-2.8B - - 2.8B
INCITE-Base-3B - - 2.8B
Open-LLaMA-3B-v2 - - 3.4B
Sheared-LLaMA-2.7B - - 2.7B

LLaMA-MoE-v1-3.0B (2/16) 2 16 3.0B
LLaMA-MoE-v1-3.5B (4/16) 4 16 3.5B
LLaMA-MoE-v1-3.5B (2/8) 2 8 3.5B

Table 1: The statistics for model parameters and activation parameters for sparse MoE models. All
LLaMA-MoE-v1-3.0B and LLaMA-MoE-v1-3.5B models have the same parameters as LLaMA-2-
7B. LLaMA-MoE-v1-3.5B has two variants including 2/8 and 4/16. They have different numbers of
experts but the same amount of activation parameters.

• IndependentRandom: We randomly partition U into n equal-sized subsets.
• IndependentClustering: Following Zhang et al. (2021), we perform a balanced k-means

clustering (Malinen and Fränti, 2014) with n centroids on the row vectors of Wup and
partition U according to the clustering result.

Neuron-Sharing. According to Zuo et al. (2022), the representation ability of a model can be
partially retained through a structured partition. Therefore, we treat the expert construction as a
structured pruning problem, by measuring the first-order Taylor expansion on loss change ∆L for
each intermediate neuron when it gets pruned. For each FFN layer, we maintain a vector v ∈ Rdh

initialized as zeros to record the importance of its intermediate neurons. Given batched data D, the
importance vector v is updated as follows:

v := v +
∑

(x,y)∈D

∣∣h⊙∇hL(x, y)
∣∣. (7)

The indices sets S1, S2, . . . , Sn are then generated using certain algorithm for the experts with sizes
m = dh

n . Given the universal indices set U = {1, 2, . . . , dh}, we have:

n⋃
i=1

Si ∈ U. (8)

• SharingInner: We obtain n importance vectors v1, v2, . . . , vn through pre-clustered n groups
of data. For each expert i, the corresponding Si consists the indices of neurons with the
largest m values in vi.

• SharingInter: Referencing the implementation in Rajbhandari et al. (2022), we set aside the
neurons shared by most experts as independent residual blocks, while others are assigned
according to the importance vectors v1, v2, . . . , vn.

Scale Factor After partitioning a dense FFN layer into multiple small experts, the activated expert
parameters are much smaller than the original dense models. To preserve the representational capacity
of the partitioned model, we introduce a scale factor and apply rescale operations to guarantee
effective expert output. In particular, considering activating k out of N experts, we will scale the
output of expert by a factor of N

k .

4.2 Continual Pre-training

Since the original LLaMA model structure is reorganized after converting to MoE, we continue
pre-training the LLaMA-MoE-v1 model to recover its language ability. The training objective is the
same as LLaMA-2 (Touvron et al., 2023a). To improve the training efficiency, we explore different
data sampling strategies and data quality filtering methods as follows.
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Data Sampling Weights. The data sampling weights are crucial to obtain a global optimum (Xie
et al., 2023). LLaMA-v1 utilizes a set of static empirical sampling weights (Touvron et al., 2023a),
while some of the domains (e.g. Wikipedia) have been proven to be less effective on downstream
tasks (Shen et al., 2023). This indicates it may be not appropriate to assign large weights when
sampling these domains. Xie et al. (2023) employ additional models to obtain better static sampling
weights. Although it is faster to get convergence, it brings additional training compute. Xia et al.
(2023) introduce a dynamic weight sampling strategy in the training phase, which boosts performance
on downstream tasks.

To obtain better performances, we investigate the following data sampling strategies for LLaMA-
MoE-v1 continual pre-training. Data sampling weights are adjusted every 2.5B tokens in dynamic
settings and the total training budget is 30B tokens.

• StaticLLaMA: Training with static LLaMA-1 sampling weights.

• StaticSheared: Applying final static sampling weights of Sheared-LLaMA.

• DynamicLLaMA: Sheared-LLaMA dynamic sampling with LLaMA-v1 weights construction.
We evaluate LLaMA-v2 on a subset of SlimPajama with all the training domains for
obtaining the reference loss.

• DynamicUniform: Sheared-LLaMA dynamic sampling with uniform weights construction.

Data Filtering. As our training budget is limited, we further explore two data filter strategies to
speed up model convergence. Specifically, we filter out ∼50% advertisements and ∼15% non-fluent
texts in CommonCrawl and C4 datasets.

5 Experiments

5.1 Training Dataset

The training dataset for LLaMA-MoE-v1 is SlimPajama (Soboleva et al., 2023), which cleans and
deduplicates the RedPajama dataset. This dataset contains 627B tokens and encompasses data from
seven domains, including CommonCrawl, C4, Github, Wikipedia, Books, arXiv, and StackExchange.

5.2 Evaluation Datasets and Comparing Models

According to Wei et al. (2023) and AI (2023a), the performance on HellaSwag (Zellers et al., 2019)
grows smoothly during pre-training. A similar trend is also found in ARC-c (Clark et al., 2018a),
thus we utilize HellaSwag and ARC-c as the evaluation datasets for the analysis experiments.

For comprehensive model ability assessment, we follow Xia et al. (2023) and use the lm-evaluation-
harness (Gao et al., 2023) to evaluate the following downstream tasks: 0-shot normalized accuracy
(acc_norm) of ARC easy (Clark et al., 2018b), LAMBADA (Paperno et al., 2016), LogiQA (Liu et al.,
2020), PIQA (Bisk et al., 2020), SciQ (Welbl et al., 2017), and WinoGrande Standard (Sakaguchi
et al., 2021), 10-shot HellaSwag (Zellers et al., 2019), 25-shot ARC Challenge (Clark et al., 2018b),
and 5-shot MMLU (Hendrycks et al., 2020). If there is no normalized accuracy, we use acc instead.
Furthermore, we use OpenCompass (Contributors, 2023) to evaluate 32-shot NQ (Kwiatkowski et al.,
2019). We compare LLaMA-MoE-v1 with strong pre-trained language models containing similar
activation parameters, including OpenLLaMA-3B-v2 (Geng and Liu, 2023), OPT-2.7B (Zhang et al.,
2022), Pythia-2.8B (Biderman et al., 2023), INCITE-Base-3B (TogetherAI, 2023), and Sheared-
LLaMA (Xia et al., 2023).

5.3 Experiment Settings

We start from LLaMA-2-7B (Touvron et al., 2023b) and explore different MoE construction strategies.
All models are trained on 112 A100 (80G) GPUs with a global batch size of 15M tokens. The
context length is 4096. The maximum learning rate is 2e-4 with 100 warmup steps and the final
learning rate decays to 2e-5 with cosine scheduling. Each LLaMA-MoE-v1 variant is expected
to be trained on 200B tokens (13.6k steps). Our implementation is based on transformers (Wolf
et al., 2020), ZeRO-1 (Rajbhandari et al., 2022), and FlashAttention v2 (Dao, 2023). The final
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Commonsense & Reading Comprehension

Model SciQ PIQA WinoGrande ARC-E ARC-C (25) HellaSwag (10)

OPT-2.7B 78.9 74.8 60.8 54.4 34.0 61.4
Pythia-2.8B 83.2 73.6 59.6 58.8 36.7 60.7
INCITE-Base-3B 85.6 73.9 63.5 61.7 40.3 64.7
Open-LLaMA-3B-v2 88.0 77.9 63.1 63.3 40.1 71.4
Sheared-LLaMA-2.7B 87.5 76.9 65.0 63.3 41.6 71.0
LLaMA-MoE-v1-3.0B 84.2 77.5 63.6 60.2 40.9 70.8
LLaMA-MoE-v1-3.5B (4/16) 87.6 77.9 65.5 65.6 44.2 73.3
LLaMA-MoE-v1-3.5B (2/8) 88.4 77.6 66.7 65.3 43.1 73.3

Continued LM World Knowledge

Model LogiQA BoolQ (32) LAMBADA NQ (32) MMLU (5) Average

OPT-2.7B 25.8 63.3 63.6 10.7 25.8 50.3
Pythia-2.8B 28.1 65.9 64.6 8.7 26.8 51.5
INCITE-Base-3B 27.5 65.8 65.4 15.2 27.2 53.7
Open-LLaMA-3B-v2 28.1 69.2 67.4 16.0 26.8 55.6
Sheared-LLaMA-2.7B 28.3 73.6 68.3 17.6 27.3 56.4
LLaMA-MoE-v1-3.0B 30.6 71.9 66.6 17.0 26.8 55.5
LLaMA-MoE-v1-3.5B (4/16) 29.7 75.0 69.5 20.3 26.8 57.7
LLaMA-MoE-v1-3.5B (2/8) 29.6 73.9 69.4 19.8 27.0 57.6

Table 2: Main results on downstream tasks. We re-evaluate all the models on these datasets. LLaMA-
MoE-3.5B significantly outperforms publicly available models of comparable size on most down-
stream tasks. The shot number used is noted in parentheses, with 0-shot if not specified.
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Figure 2: Model performances on ARC-c and HellaSwag dataset and the training loss for LLaMA-
MoE-v1-3.0B and LLaMA-MoE-v1-3.5B. The two models are trained with 200B tokens.

LLaMA-MoE-v1 models are trained on IndependentRandom with StaticSheared data sampling weights
and fluency-filtered SlimPajama datasets. More details can be found in our released code.

5.4 Main Results

As shown in Table 2, LLaMA-MoE-v1-3.5B (2/8) and LLaMA-MoE-v1-3.5B (4/16) achieve similar
average results and the latter is slightly better. However, LLaMA-MoE-v1-3.5B significantly surpasses
open-source models with similar activation parameters. Specifically, LLaMA-MoE-v1-3.5B (4/16)
exceeds the most competitive model Sheared-LLaMA by 1.3 average points. Meanwhile, LLaMA-
MoE-v1-3.0B performs comparably with Open-LLaMA-3B-v2. To demonstrate the training progress
and model capability changes. In Figure 2 (a) and (b), we present the model performances on both
ARC-c and HellaSwag and find the results on these datasets grow gradually as the training process
goes on. There are more fluctuations in ARC-c results, while HellaSwag provides smoother results.
For the training loss, as shown in Figure 2 (c), LLaMA-MoE-v1-3.0B and LLaMA-MoE-v1-3.5B
converges to about 1.95 and 1.90, respectively. The final loss are higher than LLaMA-2 7B as these
two models activate relatively smaller parameters.
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Figure 3: Model performances with different expert construction methods. Among four kinds of
construction methods, IndependentRandom obtains the best result.

5.5 Expert Construction

In this section, we compare four types of expert construction methods as introduced in § 4.1.
Interestingly, as presented in Figure 3(a), IndependentRandom achieves the best average score within
the token budget. Since gates and experts are trained simultaneously, other partition methods may
bring bias when construction, which introduces additional difficulties for recovering the model’s
language ability by continual pre-training. SharingInter has a good convergence trend at the first 5B
tokens, but it struggles to get better loss performance. Actually, we have trained more tokens for
SharingInter and the results are significantly lower than IndependentRandom. We can also observe
changes in the loss value as depicted in Figure 3(b). However, We found that models should be
trained for at least 15∼20B tokens to properly conclude. For SharingInner, an average of ∼ 50%
neurons are shared between each expert pair, thus the upper bound for this variant is quite low and the
model would like to achieve lower performance. Finally, as IndependentClustering and SharingInner
achieves much lower performances than other methods, so we only train those models for 15B tokens.

5.6 Data Sampling Weights

As Figure 4(a) shows, StaticSheared surpasses other methods within the token budget, and dynamic
data sampling weights are worse than static weights. However, the StaticSheared loss in Figure 4(b) is
greater than other methods, which indicates that the continual pre-training loss may be less relevant
to downstream task performances. The loss of DynamicUniform drops down quickly, but it suffers
from the instability problem and contains many fluctuations. From Figure 5, we find the sampling
weight of C4 goes to the opposite directions compared to StaticSheared because the estimated Sheared
LLaMA-2.7B reference loss is lower than LLaMA2-7B (2.033 vs. 2.075). It is very tricky to select
the best reference loss, we leave it for future work.

5.7 Data Filtering

We further filter out data with advertisements and those in low fluency. The results are presented
in Figure 6. Both fluency and advertisement filtering obtain lower training loss than the baseline.
However, advertisement filtering perform worse in downstream tasks. We think the number of filtered
advertisements are too large to bring more knowledge and information, and the filtering tagger should
be improved with fine-grained thresholding adjustment. The fluency filtering method successfully
removes texts in low-quality and improves the average score. Based on the results, we train our final
model with the fluency-filtered dataset. It is worth noting that we do not introduce any new datasets
but remove part of them considering model convergence speed.
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Figure 4: Model performances with different data sampling strategies. Among four sampling ways,
StaticSheared achieves the best performance. However, it does not achieve the lowest training loss.
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Figure 5: Data sampling weights variation on four domains. For StaticSheared and StaticLLaMA, the
sampling weight is fixed among the training process, while the domain importance gradually changes
for DynamicUniform and DynamicLLaMA. Both DynamicUniform and DynamicLLaMA are two dynamic
weight sampling strategies from (Xia et al., 2023).
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Figure 6: Model performances with different data filtering strategies. Here, the “baseline" is
IndependentRandom together with StaticSheared data sampling weights. “fluency" and “ad" means the
baseline strategy is equipped with removing non-fluent texts or ads.
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Figure 7: Expert routing statistics on the 1st, 8th, 28th, and 32nd layers for LLaMA-MoE-v1-3.5B
(4/16). Each cell represents the number of routed tokens to an expert. Our model has a total of 16
experts. We sample 65.5K tokens from each domain for this visualization.

5.8 Expert Specialization

As Figure 7 shows, deep layers have more routing preferences than shallow layers. This may
indicate that the shallow layers may capture more common features, while deep layers focus more on
task-specific features. Based on this finding, expert partition on the latter layers’ FFNs may bring
further improvements. We leave it for future exploration. In deeper layers, each expert has different
domain preferences and some experts are shared across different domains. These shared experts may
represent data similarities among different domains. We also find the imbalance problem at the first
two layers, where some experts are seldom selected. These experts may be pruned for future MoE
model compression.

To investigate the latent correlations among domains, we normalize the number of routed tokens and
calculate the L2 distances to represent the expert selection differences. As illustrated in Figure 8a,
CommonCrwal and C4 datasets have similar expert preferences, while GitHub has similar expert
preferences with arXiv and StackExchange. As to the Dev-to-Train differences in Figure 8b, we find
HellaSwag and ARC-c share the most similar expert preferences with CommonCrawl and C4, and
GSM-8K is similar to arXiv. This may provide some insights for continual pre-training to further
improve downstream performances. For example, the model may consume more tokens from arXiv to
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Figure 8: Expert routing differences at the 32nd layer. Smaller numbers and lighter colors represent
more similar expert routing preferences. 8.4M tokens per domain are sampled for this experiment.

improve GSM-8K results. However, expert selections on ARC-c and GSM-8K have greater distances
with current pre-training data, which may involve new domains to deal with such tasks.

6 Conclusion

In this technical report, we build LLaMA-MoE-v1-3.0B and LLaMA-MoE-v1-3.5B models based on
pre-trained LLaMA 2. Specifically, we explore different expert construction methods and continual
training strategies to obtain decent models under limited training budgets. Empirically, LLaMA-MoE-
v1-3.5B significantly outperforms open-source models with similar activation parameters, such as
Sheared-LLaMA-2.7B and Open-LLaMA-3.0B. Meanwhile, LLaMA-MoE-v1-3.0B achieves similar
performance with Open-LLaMA-3B with less activated parameters.

From the ablation studies, we find the optimized static data sampling weights could achieve better
results, and further data filtering on low-fluency texts also brings extra performance gain. LLaMA-
MoE-v1 models also show the expert specialization phenomenon, where each expert has domain
preferences. Based on this preference, we explore the expert selection similarities across pre-training
datasets and downstream task datasets. Besides, we also plan to release more LLaMA-MoE-v1
models based on 13B and larger base models in future work.
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