import csv from torch.utils.data import IterableDataset from huggingface_hub import hf_hub_download class ParsedMultiCharDataset(IterableDataset): def __init__(self, repo_id: str, delimiter: str = ".,|,.", start_file: int = 0, num_files: int = 190, guess_total_count = True): self.repo_id = repo_id self.files = [f"captions/caption_{i+start_file:03d}.csv" for i in range(num_files)] self.delimiter = ".,|,." self.total_rows = -1 if guess_total_count: self.total_rows = self.guess_total_rows() print(f"Total rows: {self.total_rows} totaling {len(self.files) * self.total_rows}") def guess_total_rows(self): # count the rows in the first file path = hf_hub_download(self.repo_id, self.files[0], repo_type="dataset") with open(path, encoding="utf-8") as f: reader = csv.DictReader(f) return sum(1 for _ in reader) def __iter__(self): for rel_path in self.files: path = hf_hub_download(self.repo_id, rel_path, repo_type="dataset") with open(path, encoding="utf-8") as f: reader = csv.DictReader(f) for row in reader: id_ = row.get("id", "").strip() text_field = row.get("text", "") for caption in text_field.split(self.delimiter): caption = caption.strip() if caption: yield (id_, caption) #ds = ParsedMultiCharDataset( # repo_id="AbstractPhil/human-templated-captions-1b", # start_file=0, # num_files=10 #) #for i, ex in enumerate(ds): # print(ex) # if i > 10: # break #