import os import json import numpy as np import datasets from datasets import Features, Value, Audio, Array2D, Sequence from pathlib import Path import librosa _CITATION = """\ comming soon. """ _DESCRIPTION = """\ SongFormBench is a high-quality benchmark dataset for song structure analysis, consisting of 200 songs from HarmonixSet and 100 Chinese pop songs, aimed at establishing a unified evaluation standard in the MSA field, advancing the task, and addressing the lack of Chinese data. """ _HOMEPAGE = "https://huggingface.co/datasets/ASLP-lab/SongFormBench" _LICENSE = "cc-by-4.0" class SongFormBench(datasets.GeneratorBasedBuilder): """SongFormBench: A Benchmark for Song Structure Analysis (only test split).""" BUILDER_CONFIGS = [ datasets.BuilderConfig( name="default", version=datasets.Version("1.0.0"), description="MSA Benchmark Test Set", ), ] DEFAULT_CONFIG_NAME = "default" def _info(self): features = Features( { "id": Value("string"), "youtube_url": Value("string"), "subset": Value("string"), "language": Value("string"), "audio": Audio(), "mel_path": Value("string"), "label_path": Value("string"), "labels": { "segments": Sequence( { "start": Value("float32"), "label": Value("string"), } ), }, } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, citation=_CITATION, license=_LICENSE, homepage=_HOMEPAGE, ) def _split_generators(self, dl_manager): test_path = os.path.join(dl_manager.manual_dir, "data/SongFormBench.jsonl") self.root_dir = dl_manager.manual_dir # 保存根目录以供后续使用 with open(test_path, "r", encoding="utf-8") as f: items = [json.loads(line) for line in f] self.items = items # 将数据存储为实例变量,供 _generate_examples 使用 return [ datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"items": self.items}, # 将数据传递给生成器 ), ] def _generate_examples(self, items): """从内存数据生成样本""" for entry in items: raw_labels = entry.get("labels", []) yield ( entry["id"], { "id": entry["id"], "youtube_url": entry.get("youtube_url", ""), "subset": entry.get("subset", ""), "language": entry.get("language", ""), "audio": str(Path(self.root_dir) / entry["audio_path"]), "mel_path": str(Path(self.root_dir) / entry.get("mel_path", "")), "label_path": str( Path(self.root_dir) / entry.get("label_path", "") ), "labels": { "segments": raw_labels, }, }, )