|
import os |
|
import json |
|
import numpy as np |
|
import datasets |
|
from datasets import Features, Value, Audio, Array2D, Sequence |
|
from pathlib import Path |
|
import librosa |
|
|
|
_CITATION = """\ |
|
comming soon. |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
SongFormBench is a high-quality benchmark dataset for song structure analysis, consisting of 200 songs from HarmonixSet and 100 Chinese pop songs, aimed at establishing a unified evaluation standard in the MSA field, advancing the task, and addressing the lack of Chinese data. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/ASLP-lab/SongFormBench" |
|
_LICENSE = "cc-by-4.0" |
|
|
|
|
|
class SongFormBench(datasets.GeneratorBasedBuilder): |
|
"""SongFormBench: A Benchmark for Song Structure Analysis (only test split).""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="default", |
|
version=datasets.Version("1.0.0"), |
|
description="MSA Benchmark Test Set", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "default" |
|
|
|
def _info(self): |
|
features = Features( |
|
{ |
|
"id": Value("string"), |
|
"youtube_url": Value("string"), |
|
"subset": Value("string"), |
|
"language": Value("string"), |
|
"audio": Audio(), |
|
"mel_path": Value("string"), |
|
"label_path": Value("string"), |
|
"labels": { |
|
"segments": Sequence( |
|
{ |
|
"start": Value("float32"), |
|
"label": Value("string"), |
|
} |
|
), |
|
}, |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
homepage=_HOMEPAGE, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
test_path = os.path.join(dl_manager.manual_dir, "data/SongFormBench.jsonl") |
|
self.root_dir = dl_manager.manual_dir |
|
|
|
with open(test_path, "r", encoding="utf-8") as f: |
|
items = [json.loads(line) for line in f] |
|
|
|
self.items = items |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"items": self.items}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, items): |
|
"""从内存数据生成样本""" |
|
for entry in items: |
|
raw_labels = entry.get("labels", []) |
|
yield ( |
|
entry["id"], |
|
{ |
|
"id": entry["id"], |
|
"youtube_url": entry.get("youtube_url", ""), |
|
"subset": entry.get("subset", ""), |
|
"language": entry.get("language", ""), |
|
"audio": str(Path(self.root_dir) / entry["audio_path"]), |
|
"mel_path": str(Path(self.root_dir) / entry.get("mel_path", "")), |
|
"label_path": str( |
|
Path(self.root_dir) / entry.get("label_path", "") |
|
), |
|
"labels": { |
|
"segments": raw_labels, |
|
}, |
|
}, |
|
) |
|
|