darshjoshi16 commited on
Commit
9a00b32
·
verified ·
1 Parent(s): aed782f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -32
README.md CHANGED
@@ -1,4 +1,4 @@
1
-
2
  license: apache-2.0
3
  tags:
4
  - peft
@@ -48,48 +48,53 @@ prompt = "Q: Julie read 12 pages yesterday and twice as many today. If she wants
48
  inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
49
  outputs = model.generate(**inputs, max_new_tokens=100)
50
  print(tokenizer.decode(outputs[0], skip_special_tokens=True))
 
 
 
 
 
51
 
 
 
 
 
 
52
 
53
-
54
 
55
- 📊 Evaluation Results
56
 
57
- Task Metric Score Samples
58
- GSM8K Exact Match (strict) 54.6% 500
59
- ARC-Easy Accuracy 79.0% 500
60
- HellaSwag Accuracy (Normalized) 61.0% 500
61
 
62
- Benchmarks were run using EleutherAI’s lm-eval-harness
 
 
 
 
 
63
 
64
-
65
 
66
- ⚙️ Training Details
67
- • Method: LoRA (rank=8, alpha=16, dropout=0.1)
68
- • Epochs: 1 (proof of concept)
69
- • Batch size: 4 per device
70
- • Precision: FP16
71
- • Platform: Google Colab (T4 GPU)
72
- • Framework: 🤗 Transformers + PEFT
73
 
74
-
 
 
75
 
76
- 🔍 Limitations
77
- • Fine-tuned for math problems only (not general-purpose reasoning)
78
- • Trained for 1 epoch — additional training may improve performance
79
- • Adapter-only: base model (microsoft/phi-2) must be loaded alongside
80
 
81
-
82
 
83
- 📘 Citation & References
84
- • LoRA: Low-Rank Adaptation
85
- • Phi-2 Model Card
86
- • GSM8K Dataset
87
- • PEFT Library
88
- • Transformers
 
89
 
90
-
91
 
92
- 💬 Author
 
93
 
94
- This model was fine-tuned and open-sourced by Darsh Joshi ([email protected]).
95
- Feel free to reach out or contribute.
 
1
+ ---
2
  license: apache-2.0
3
  tags:
4
  - peft
 
48
  inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
49
  outputs = model.generate(**inputs, max_new_tokens=100)
50
  print(tokenizer.decode(outputs[0], skip_special_tokens=True))
51
+ ```
52
+
53
+ ---
54
+
55
+ ## 📊 Evaluation Results
56
 
57
+ | Task | Metric | Score | Samples |
58
+ |-------------|-----------------------------|--------|---------|
59
+ | GSM8K | Exact Match (strict) | 54.6% | 500 |
60
+ | ARC-Easy | Accuracy | 79.0% | 500 |
61
+ | HellaSwag | Accuracy (Normalized) | 61.0% | 500 |
62
 
63
+ > Benchmarks were run using [EleutherAI’s lm-eval-harness](https://github.com/EleutherAI/lm-eval-harness)
64
 
65
+ ---
66
 
67
+ ## ⚙️ Training Details
 
 
 
68
 
69
+ - **Method**: LoRA (rank=8, alpha=16, dropout=0.1)
70
+ - **Epochs**: 1 (proof of concept)
71
+ - **Batch size**: 4 per device
72
+ - **Precision**: FP16
73
+ - **Platform**: Google Colab (T4 GPU)
74
+ - **Framework**: [🤗 Transformers](https://github.com/huggingface/transformers) + [PEFT](https://github.com/huggingface/peft)
75
 
76
+ ---
77
 
78
+ ## 🔍 Limitations
 
 
 
 
 
 
79
 
80
+ - Fine-tuned for math problems only (not general-purpose reasoning)
81
+ - Trained for 1 epoch — additional training may improve performance
82
+ - Adapter-only: base model (`microsoft/phi-2`) must be loaded alongside
83
 
84
+ ---
 
 
 
85
 
86
+ ## 📘 Citation & References
87
 
88
+ - [LoRA: Low-Rank Adaptation](https://arxiv.org/abs/2106.09685)
89
+ - [Phi-2 Model Card](https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/)
90
+ - [GSM8K Dataset](https://huggingface.co/datasets/gsm8k)
91
+ - [PEFT Library](https://github.com/huggingface/peft)
92
+ - [Transformers](https://huggingface.co/docs/transformers)
93
+
94
+ ---
95
 
96
+ ## 💬 Author
97
 
98
+ This model was fine-tuned and open-sourced by **[Darsh Joshi](https://huggingface.co/darshjoshi16)**.
99
+ Feel free to [reach out](mailto:[email protected]) or contribute.
100