--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: xlm_roberta_lr2e-05_bs8_ep4 results: [] --- # xlm_roberta_lr2e-05_bs8_ep4 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1877 - Precision: 0.8767 - Recall: 0.8156 - F1: 0.8451 - Accuracy: 0.9243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4701 | 1.0 | 430 | 0.3638 | 0.7295 | 0.5499 | 0.6271 | 0.8346 | | 0.3818 | 2.0 | 860 | 0.3044 | 0.7008 | 0.8110 | 0.7519 | 0.8646 | | 0.3108 | 3.0 | 1290 | 0.2210 | 0.8129 | 0.8267 | 0.8197 | 0.9080 | | 0.2399 | 4.0 | 1720 | 0.1877 | 0.8767 | 0.8156 | 0.8451 | 0.9243 | ### Framework versions - Transformers 4.47.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1