--- library_name: transformers license: mit base_model: gpt2-medium tags: - generated_from_trainer model-index: - name: chessgpt-medium-l results: [] --- # chessgpt-medium-l This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.4326 | 0.064 | 1000 | 1.3596 | | 1.2424 | 0.128 | 2000 | 1.1829 | | 1.1278 | 0.192 | 3000 | 1.0753 | | 1.0296 | 0.256 | 4000 | 0.9877 | | 0.9605 | 0.32 | 5000 | 0.9224 | | 0.9193 | 0.384 | 6000 | 0.8874 | | 0.8911 | 0.448 | 7000 | 0.8600 | | 0.8707 | 0.512 | 8000 | 0.8405 | | 0.8521 | 0.576 | 9000 | 0.8221 | | 0.8391 | 0.64 | 10000 | 0.8089 | | 0.8242 | 0.704 | 11000 | 0.7972 | | 0.8146 | 0.768 | 12000 | 0.7858 | | 0.8047 | 0.832 | 13000 | 0.7769 | | 0.7974 | 0.896 | 14000 | 0.7701 | | 0.7916 | 0.96 | 15000 | 0.7651 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1