lbourdois commited on
Commit
88f3d71
·
verified ·
1 Parent(s): d37c1fe

Improve language tag

Browse files

Hi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.

Files changed (1) hide show
  1. README.md +205 -191
README.md CHANGED
@@ -1,192 +1,206 @@
1
- ---
2
- library_name: peft
3
- license: other
4
- base_model: Qwen/Qwen2.5-3B-Instruct
5
- tags:
6
- - axolotl
7
- - generated_from_trainer
8
- model-index:
9
- - name: 7c9cc9fc-695e-48bd-a070-9c66bb428a01
10
- results: []
11
- ---
12
-
13
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
- should probably proofread and complete it, then remove this comment. -->
15
-
16
- [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
- <details><summary>See axolotl config</summary>
18
-
19
- axolotl version: `0.4.1`
20
- ```yaml
21
- adapter: lora
22
- base_model: Qwen/Qwen2.5-3B-Instruct
23
- bf16: auto
24
- chat_template: llama3
25
- cosine_min_lr_ratio: 0.1
26
- data_processes: 4
27
- dataset_prepared_path: null
28
- datasets:
29
- - data_files:
30
- - 6f3b083da67e6d15_train_data.json
31
- ds_type: json
32
- format: custom
33
- num_proc: 4
34
- path: /workspace/input_data/6f3b083da67e6d15_train_data.json
35
- streaming: true
36
- type:
37
- field_instruction: input
38
- field_output: answer_chatdoctor
39
- format: '{instruction}'
40
- no_input_format: '{instruction}'
41
- system_format: '{system}'
42
- system_prompt: ''
43
- debug: null
44
- deepspeed: null
45
- device_map:
46
- lm_head: 3
47
- model.embed_tokens: 0
48
- model.layers.0: 0
49
- model.layers.1: 0
50
- model.layers.10: 3
51
- model.layers.11: 3
52
- model.layers.2: 0
53
- model.layers.3: 1
54
- model.layers.4: 1
55
- model.layers.5: 1
56
- model.layers.6: 2
57
- model.layers.7: 2
58
- model.layers.8: 2
59
- model.layers.9: 3
60
- model.norm: 3
61
- do_eval: true
62
- early_stopping_patience: 1
63
- eval_batch_size: 1
64
- eval_sample_packing: false
65
- eval_steps: 25
66
- evaluation_strategy: steps
67
- flash_attention: false
68
- fp16: null
69
- fsdp: null
70
- fsdp_config: null
71
- gradient_accumulation_steps: 32
72
- gradient_checkpointing: true
73
- group_by_length: true
74
- hub_model_id: dada22231/7c9cc9fc-695e-48bd-a070-9c66bb428a01
75
- hub_strategy: checkpoint
76
- hub_token: null
77
- learning_rate: 0.0001
78
- load_in_4bit: false
79
- load_in_8bit: false
80
- local_rank: null
81
- logging_steps: 1
82
- lora_alpha: 64
83
- lora_dropout: 0.05
84
- lora_fan_in_fan_out: null
85
- lora_model_dir: null
86
- lora_r: 32
87
- lora_target_linear: true
88
- lora_target_modules:
89
- - q_proj
90
- - v_proj
91
- lr_scheduler: cosine
92
- max_grad_norm: 0.3
93
- max_memory:
94
- 0: 60GB
95
- 1: 70GB
96
- 2: 70GB
97
- 3: 70GB
98
- cpu: 96GB
99
- max_steps: 50
100
- micro_batch_size: 1
101
- mixed_precision: bf16
102
- mlflow_experiment_name: /tmp/6f3b083da67e6d15_train_data.json
103
- model_type: AutoModelForCausalLM
104
- num_epochs: 3
105
- optim_args:
106
- adam_beta1: 0.9
107
- adam_beta2: 0.95
108
- adam_epsilon: 1e-5
109
- optimizer: adamw_torch
110
- output_dir: miner_id_24
111
- pad_to_sequence_len: true
112
- resume_from_checkpoint: null
113
- s2_attention: null
114
- sample_packing: false
115
- save_steps: 25
116
- save_strategy: steps
117
- sequence_len: 2048
118
- strict: false
119
- tf32: false
120
- tokenizer_type: AutoTokenizer
121
- torch_compile: false
122
- torch_dtype: bfloat16
123
- train_on_inputs: false
124
- trust_remote_code: true
125
- use_cache: false
126
- val_set_size: 50
127
- wandb_entity: null
128
- wandb_mode: online
129
- wandb_name: 7c9cc9fc-695e-48bd-a070-9c66bb428a01
130
- wandb_project: Public_TuningSN
131
- wandb_runid: 7c9cc9fc-695e-48bd-a070-9c66bb428a01
132
- warmup_ratio: 0.05
133
- weight_decay: 0.01
134
- xformers_attention: null
135
-
136
- ```
137
-
138
- </details><br>
139
-
140
- # 7c9cc9fc-695e-48bd-a070-9c66bb428a01
141
-
142
- This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the None dataset.
143
- It achieves the following results on the evaluation set:
144
- - Loss: 1.4119
145
-
146
- ## Model description
147
-
148
- More information needed
149
-
150
- ## Intended uses & limitations
151
-
152
- More information needed
153
-
154
- ## Training and evaluation data
155
-
156
- More information needed
157
-
158
- ## Training procedure
159
-
160
- ### Training hyperparameters
161
-
162
- The following hyperparameters were used during training:
163
- - learning_rate: 0.0001
164
- - train_batch_size: 1
165
- - eval_batch_size: 1
166
- - seed: 42
167
- - distributed_type: multi-GPU
168
- - num_devices: 4
169
- - gradient_accumulation_steps: 32
170
- - total_train_batch_size: 128
171
- - total_eval_batch_size: 4
172
- - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
173
- - lr_scheduler_type: cosine
174
- - lr_scheduler_warmup_steps: 2
175
- - training_steps: 50
176
-
177
- ### Training results
178
-
179
- | Training Loss | Epoch | Step | Validation Loss |
180
- |:-------------:|:------:|:----:|:---------------:|
181
- | 1.9701 | 0.0192 | 1 | 2.0733 |
182
- | 1.4092 | 0.4796 | 25 | 1.4527 |
183
- | 1.3941 | 0.9592 | 50 | 1.4119 |
184
-
185
-
186
- ### Framework versions
187
-
188
- - PEFT 0.13.2
189
- - Transformers 4.46.0
190
- - Pytorch 2.5.0+cu124
191
- - Datasets 3.0.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
192
  - Tokenizers 0.20.1
 
1
+ ---
2
+ library_name: peft
3
+ license: other
4
+ base_model: Qwen/Qwen2.5-3B-Instruct
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ language:
9
+ - zho
10
+ - eng
11
+ - fra
12
+ - spa
13
+ - por
14
+ - deu
15
+ - ita
16
+ - rus
17
+ - jpn
18
+ - kor
19
+ - vie
20
+ - tha
21
+ - ara
22
+ model-index:
23
+ - name: 7c9cc9fc-695e-48bd-a070-9c66bb428a01
24
+ results: []
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
31
+ <details><summary>See axolotl config</summary>
32
+
33
+ axolotl version: `0.4.1`
34
+ ```yaml
35
+ adapter: lora
36
+ base_model: Qwen/Qwen2.5-3B-Instruct
37
+ bf16: auto
38
+ chat_template: llama3
39
+ cosine_min_lr_ratio: 0.1
40
+ data_processes: 4
41
+ dataset_prepared_path: null
42
+ datasets:
43
+ - data_files:
44
+ - 6f3b083da67e6d15_train_data.json
45
+ ds_type: json
46
+ format: custom
47
+ num_proc: 4
48
+ path: /workspace/input_data/6f3b083da67e6d15_train_data.json
49
+ streaming: true
50
+ type:
51
+ field_instruction: input
52
+ field_output: answer_chatdoctor
53
+ format: '{instruction}'
54
+ no_input_format: '{instruction}'
55
+ system_format: '{system}'
56
+ system_prompt: ''
57
+ debug: null
58
+ deepspeed: null
59
+ device_map:
60
+ lm_head: 3
61
+ model.embed_tokens: 0
62
+ model.layers.0: 0
63
+ model.layers.1: 0
64
+ model.layers.10: 3
65
+ model.layers.11: 3
66
+ model.layers.2: 0
67
+ model.layers.3: 1
68
+ model.layers.4: 1
69
+ model.layers.5: 1
70
+ model.layers.6: 2
71
+ model.layers.7: 2
72
+ model.layers.8: 2
73
+ model.layers.9: 3
74
+ model.norm: 3
75
+ do_eval: true
76
+ early_stopping_patience: 1
77
+ eval_batch_size: 1
78
+ eval_sample_packing: false
79
+ eval_steps: 25
80
+ evaluation_strategy: steps
81
+ flash_attention: false
82
+ fp16: null
83
+ fsdp: null
84
+ fsdp_config: null
85
+ gradient_accumulation_steps: 32
86
+ gradient_checkpointing: true
87
+ group_by_length: true
88
+ hub_model_id: dada22231/7c9cc9fc-695e-48bd-a070-9c66bb428a01
89
+ hub_strategy: checkpoint
90
+ hub_token: null
91
+ learning_rate: 0.0001
92
+ load_in_4bit: false
93
+ load_in_8bit: false
94
+ local_rank: null
95
+ logging_steps: 1
96
+ lora_alpha: 64
97
+ lora_dropout: 0.05
98
+ lora_fan_in_fan_out: null
99
+ lora_model_dir: null
100
+ lora_r: 32
101
+ lora_target_linear: true
102
+ lora_target_modules:
103
+ - q_proj
104
+ - v_proj
105
+ lr_scheduler: cosine
106
+ max_grad_norm: 0.3
107
+ max_memory:
108
+ 0: 60GB
109
+ 1: 70GB
110
+ 2: 70GB
111
+ 3: 70GB
112
+ cpu: 96GB
113
+ max_steps: 50
114
+ micro_batch_size: 1
115
+ mixed_precision: bf16
116
+ mlflow_experiment_name: /tmp/6f3b083da67e6d15_train_data.json
117
+ model_type: AutoModelForCausalLM
118
+ num_epochs: 3
119
+ optim_args:
120
+ adam_beta1: 0.9
121
+ adam_beta2: 0.95
122
+ adam_epsilon: 1e-5
123
+ optimizer: adamw_torch
124
+ output_dir: miner_id_24
125
+ pad_to_sequence_len: true
126
+ resume_from_checkpoint: null
127
+ s2_attention: null
128
+ sample_packing: false
129
+ save_steps: 25
130
+ save_strategy: steps
131
+ sequence_len: 2048
132
+ strict: false
133
+ tf32: false
134
+ tokenizer_type: AutoTokenizer
135
+ torch_compile: false
136
+ torch_dtype: bfloat16
137
+ train_on_inputs: false
138
+ trust_remote_code: true
139
+ use_cache: false
140
+ val_set_size: 50
141
+ wandb_entity: null
142
+ wandb_mode: online
143
+ wandb_name: 7c9cc9fc-695e-48bd-a070-9c66bb428a01
144
+ wandb_project: Public_TuningSN
145
+ wandb_runid: 7c9cc9fc-695e-48bd-a070-9c66bb428a01
146
+ warmup_ratio: 0.05
147
+ weight_decay: 0.01
148
+ xformers_attention: null
149
+
150
+ ```
151
+
152
+ </details><br>
153
+
154
+ # 7c9cc9fc-695e-48bd-a070-9c66bb428a01
155
+
156
+ This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the None dataset.
157
+ It achieves the following results on the evaluation set:
158
+ - Loss: 1.4119
159
+
160
+ ## Model description
161
+
162
+ More information needed
163
+
164
+ ## Intended uses & limitations
165
+
166
+ More information needed
167
+
168
+ ## Training and evaluation data
169
+
170
+ More information needed
171
+
172
+ ## Training procedure
173
+
174
+ ### Training hyperparameters
175
+
176
+ The following hyperparameters were used during training:
177
+ - learning_rate: 0.0001
178
+ - train_batch_size: 1
179
+ - eval_batch_size: 1
180
+ - seed: 42
181
+ - distributed_type: multi-GPU
182
+ - num_devices: 4
183
+ - gradient_accumulation_steps: 32
184
+ - total_train_batch_size: 128
185
+ - total_eval_batch_size: 4
186
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
187
+ - lr_scheduler_type: cosine
188
+ - lr_scheduler_warmup_steps: 2
189
+ - training_steps: 50
190
+
191
+ ### Training results
192
+
193
+ | Training Loss | Epoch | Step | Validation Loss |
194
+ |:-------------:|:------:|:----:|:---------------:|
195
+ | 1.9701 | 0.0192 | 1 | 2.0733 |
196
+ | 1.4092 | 0.4796 | 25 | 1.4527 |
197
+ | 1.3941 | 0.9592 | 50 | 1.4119 |
198
+
199
+
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
203
+ - Transformers 4.46.0
204
+ - Pytorch 2.5.0+cu124
205
+ - Datasets 3.0.1
206
  - Tokenizers 0.20.1